| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfbid | GIF version | ||
| Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 ↔ 𝜒). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 29-Dec-2017.) |
| Ref | Expression |
|---|---|
| nfbid.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| nfbid.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| Ref | Expression |
|---|---|
| nfbid | ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 388 | . 2 ⊢ ((𝜓 ↔ 𝜒) ↔ ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) | |
| 2 | nfbid.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 3 | nfbid.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 4 | 2, 3 | nfimd 1608 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
| 5 | 3, 2 | nfimd 1608 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜒 → 𝜓)) |
| 6 | 4, 5 | nfand 1591 | . 2 ⊢ (𝜑 → Ⅎ𝑥((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) |
| 7 | 1, 6 | nfxfrd 1498 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 Ⅎwnf 1483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 |
| This theorem is referenced by: nfbi 1612 nfeudv 2069 nfeqd 2363 nfiotadw 5235 iota2df 5257 bdsepnft 15827 |
| Copyright terms: Public domain | W3C validator |