ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfbid GIF version

Theorem nfbid 1612
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 29-Dec-2017.)
Hypotheses
Ref Expression
nfbid.1 (𝜑 → Ⅎ𝑥𝜓)
nfbid.2 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
nfbid (𝜑 → Ⅎ𝑥(𝜓𝜒))

Proof of Theorem nfbid
StepHypRef Expression
1 dfbi2 388 . 2 ((𝜓𝜒) ↔ ((𝜓𝜒) ∧ (𝜒𝜓)))
2 nfbid.1 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
3 nfbid.2 . . . 4 (𝜑 → Ⅎ𝑥𝜒)
42, 3nfimd 1609 . . 3 (𝜑 → Ⅎ𝑥(𝜓𝜒))
53, 2nfimd 1609 . . 3 (𝜑 → Ⅎ𝑥(𝜒𝜓))
64, 5nfand 1592 . 2 (𝜑 → Ⅎ𝑥((𝜓𝜒) ∧ (𝜒𝜓)))
71, 6nfxfrd 1499 1 (𝜑 → Ⅎ𝑥(𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wnf 1484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-4 1534  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485
This theorem is referenced by:  nfbi  1613  nfeudv  2070  nfeqd  2365  nfiotadw  5254  iota2df  5276  bdsepnft  16022
  Copyright terms: Public domain W3C validator