ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfal GIF version

Theorem nfal 1576
Description: If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-4 1510. (Revised by Gino Giotto, 25-Aug-2024.)
Hypothesis
Ref Expression
nfal.1 𝑥𝜑
Assertion
Ref Expression
nfal 𝑥𝑦𝜑

Proof of Theorem nfal
StepHypRef Expression
1 df-nf 1461 . . . . . 6 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
21biimpi 120 . . . . 5 (Ⅎ𝑥𝜑 → ∀𝑥(𝜑 → ∀𝑥𝜑))
32alimi 1455 . . . 4 (∀𝑦𝑥𝜑 → ∀𝑦𝑥(𝜑 → ∀𝑥𝜑))
4 ax-7 1448 . . . 4 (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(𝜑 → ∀𝑥𝜑))
5 ax-5 1447 . . . . . 6 (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦𝑥𝜑))
6 ax-7 1448 . . . . . 6 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
75, 6syl6 33 . . . . 5 (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥𝑦𝜑))
87alimi 1455 . . . 4 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
93, 4, 83syl 17 . . 3 (∀𝑦𝑥𝜑 → ∀𝑥(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
10 df-nf 1461 . . 3 (Ⅎ𝑥𝑦𝜑 ↔ ∀𝑥(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
119, 10sylibr 134 . 2 (∀𝑦𝑥𝜑 → Ⅎ𝑥𝑦𝜑)
12 nfal.1 . 2 𝑥𝜑
1311, 12mpg 1451 1 𝑥𝑦𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351  wnf 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  nfnf  1577  nfa2  1579  aaan  1587  cbv3  1742  cbv2  1749  nfald  1760  cbval2  1921  nfsb4t  2014  nfeuv  2044  mo23  2067  bm1.1  2162  nfnfc1  2322  nfnfc  2326  nfeq  2327  nfabdw  2338  sbcnestgf  3110  dfnfc2  3829  nfdisjv  3994  nfdisj1  3995  nffr  4351  exmidfodomrlemr  7203  exmidfodomrlemrALT  7204  exmidunben  12429  bdsepnft  14678  bdsepnfALT  14680  setindft  14756  strcollnft  14775  pw1nct  14791
  Copyright terms: Public domain W3C validator