| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfal | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-4 1534. (Revised by GG, 25-Aug-2024.) |
| Ref | Expression |
|---|---|
| nfal.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1485 | . . . . . 6 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | 1 | biimpi 120 | . . . . 5 ⊢ (Ⅎ𝑥𝜑 → ∀𝑥(𝜑 → ∀𝑥𝜑)) |
| 3 | 2 | alimi 1479 | . . . 4 ⊢ (∀𝑦Ⅎ𝑥𝜑 → ∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑)) |
| 4 | ax-7 1472 | . . . 4 ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)) | |
| 5 | ax-5 1471 | . . . . . 6 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑)) | |
| 6 | ax-7 1472 | . . . . . 6 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 7 | 5, 6 | syl6 33 | . . . . 5 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| 8 | 7 | alimi 1479 | . . . 4 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| 9 | 3, 4, 8 | 3syl 17 | . . 3 ⊢ (∀𝑦Ⅎ𝑥𝜑 → ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| 10 | df-nf 1485 | . . 3 ⊢ (Ⅎ𝑥∀𝑦𝜑 ↔ ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | |
| 11 | 9, 10 | sylibr 134 | . 2 ⊢ (∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥∀𝑦𝜑) |
| 12 | nfal.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 13 | 11, 12 | mpg 1475 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: nfnf 1601 nfa2 1603 aaan 1611 cbv3 1766 cbv2 1773 nfald 1784 cbval2 1946 nfsb4t 2043 nfeuv 2073 mo23 2096 bm1.1 2191 nfnfc1 2352 nfnfc 2356 nfeq 2357 nfabdw 2368 sbcnestgf 3149 dfnfc2 3877 nfdisjv 4042 nfdisj1 4043 nffr 4409 uchoice 6241 exmidfodomrlemr 7336 exmidfodomrlemrALT 7337 exmidunben 12882 bdsepnft 15992 bdsepnfALT 15994 setindft 16070 strcollnft 16089 pw1nct 16112 |
| Copyright terms: Public domain | W3C validator |