| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfal | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-4 1532. (Revised by GG, 25-Aug-2024.) |
| Ref | Expression |
|---|---|
| nfal.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1483 | . . . . . 6 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | 1 | biimpi 120 | . . . . 5 ⊢ (Ⅎ𝑥𝜑 → ∀𝑥(𝜑 → ∀𝑥𝜑)) |
| 3 | 2 | alimi 1477 | . . . 4 ⊢ (∀𝑦Ⅎ𝑥𝜑 → ∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑)) |
| 4 | ax-7 1470 | . . . 4 ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)) | |
| 5 | ax-5 1469 | . . . . . 6 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑)) | |
| 6 | ax-7 1470 | . . . . . 6 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 7 | 5, 6 | syl6 33 | . . . . 5 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| 8 | 7 | alimi 1477 | . . . 4 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| 9 | 3, 4, 8 | 3syl 17 | . . 3 ⊢ (∀𝑦Ⅎ𝑥𝜑 → ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| 10 | df-nf 1483 | . . 3 ⊢ (Ⅎ𝑥∀𝑦𝜑 ↔ ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | |
| 11 | 9, 10 | sylibr 134 | . 2 ⊢ (∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥∀𝑦𝜑) |
| 12 | nfal.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 13 | 11, 12 | mpg 1473 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 Ⅎwnf 1482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 |
| This theorem is referenced by: nfnf 1599 nfa2 1601 aaan 1609 cbv3 1764 cbv2 1771 nfald 1782 cbval2 1944 nfsb4t 2041 nfeuv 2071 mo23 2094 bm1.1 2189 nfnfc1 2350 nfnfc 2354 nfeq 2355 nfabdw 2366 sbcnestgf 3144 dfnfc2 3867 nfdisjv 4032 nfdisj1 4033 nffr 4395 uchoice 6222 exmidfodomrlemr 7309 exmidfodomrlemrALT 7310 exmidunben 12739 bdsepnft 15756 bdsepnfALT 15758 setindft 15834 strcollnft 15853 pw1nct 15873 |
| Copyright terms: Public domain | W3C validator |