ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfal GIF version

Theorem nfal 1598
Description: If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-4 1532. (Revised by GG, 25-Aug-2024.)
Hypothesis
Ref Expression
nfal.1 𝑥𝜑
Assertion
Ref Expression
nfal 𝑥𝑦𝜑

Proof of Theorem nfal
StepHypRef Expression
1 df-nf 1483 . . . . . 6 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
21biimpi 120 . . . . 5 (Ⅎ𝑥𝜑 → ∀𝑥(𝜑 → ∀𝑥𝜑))
32alimi 1477 . . . 4 (∀𝑦𝑥𝜑 → ∀𝑦𝑥(𝜑 → ∀𝑥𝜑))
4 ax-7 1470 . . . 4 (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(𝜑 → ∀𝑥𝜑))
5 ax-5 1469 . . . . . 6 (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦𝑥𝜑))
6 ax-7 1470 . . . . . 6 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
75, 6syl6 33 . . . . 5 (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥𝑦𝜑))
87alimi 1477 . . . 4 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
93, 4, 83syl 17 . . 3 (∀𝑦𝑥𝜑 → ∀𝑥(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
10 df-nf 1483 . . 3 (Ⅎ𝑥𝑦𝜑 ↔ ∀𝑥(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
119, 10sylibr 134 . 2 (∀𝑦𝑥𝜑 → Ⅎ𝑥𝑦𝜑)
12 nfal.1 . 2 𝑥𝜑
1311, 12mpg 1473 1 𝑥𝑦𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1370  wnf 1482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471
This theorem depends on definitions:  df-bi 117  df-nf 1483
This theorem is referenced by:  nfnf  1599  nfa2  1601  aaan  1609  cbv3  1764  cbv2  1771  nfald  1782  cbval2  1944  nfsb4t  2041  nfeuv  2071  mo23  2094  bm1.1  2189  nfnfc1  2350  nfnfc  2354  nfeq  2355  nfabdw  2366  sbcnestgf  3144  dfnfc2  3867  nfdisjv  4032  nfdisj1  4033  nffr  4395  uchoice  6222  exmidfodomrlemr  7309  exmidfodomrlemrALT  7310  exmidunben  12739  bdsepnft  15756  bdsepnfALT  15758  setindft  15834  strcollnft  15853  pw1nct  15873
  Copyright terms: Public domain W3C validator