Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfal | GIF version |
Description: If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-4 1503. (Revised by Gino Giotto, 25-Aug-2024.) |
Ref | Expression |
---|---|
nfal.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1454 | . . . . . 6 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | 1 | biimpi 119 | . . . . 5 ⊢ (Ⅎ𝑥𝜑 → ∀𝑥(𝜑 → ∀𝑥𝜑)) |
3 | 2 | alimi 1448 | . . . 4 ⊢ (∀𝑦Ⅎ𝑥𝜑 → ∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑)) |
4 | ax-7 1441 | . . . 4 ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)) | |
5 | ax-5 1440 | . . . . . 6 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑)) | |
6 | ax-7 1441 | . . . . . 6 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
7 | 5, 6 | syl6 33 | . . . . 5 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
8 | 7 | alimi 1448 | . . . 4 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
9 | 3, 4, 8 | 3syl 17 | . . 3 ⊢ (∀𝑦Ⅎ𝑥𝜑 → ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
10 | df-nf 1454 | . . 3 ⊢ (Ⅎ𝑥∀𝑦𝜑 ↔ ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | |
11 | 9, 10 | sylibr 133 | . 2 ⊢ (∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥∀𝑦𝜑) |
12 | nfal.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
13 | 11, 12 | mpg 1444 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 Ⅎwnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: nfnf 1570 nfa2 1572 aaan 1580 cbv3 1735 cbv2 1742 nfald 1753 cbval2 1914 nfsb4t 2007 nfeuv 2037 mo23 2060 bm1.1 2155 nfnfc1 2315 nfnfc 2319 nfeq 2320 nfabdw 2331 sbcnestgf 3100 dfnfc2 3812 nfdisjv 3976 nfdisj1 3977 nffr 4332 exmidfodomrlemr 7166 exmidfodomrlemrALT 7167 exmidunben 12368 bdsepnft 13882 bdsepnfALT 13884 setindft 13960 strcollnft 13979 pw1nct 13996 |
Copyright terms: Public domain | W3C validator |