Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfal | GIF version |
Description: If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-4 1498. (Revised by Gino Giotto, 25-Aug-2024.) |
Ref | Expression |
---|---|
nfal.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1449 | . . . . . 6 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | 1 | biimpi 119 | . . . . 5 ⊢ (Ⅎ𝑥𝜑 → ∀𝑥(𝜑 → ∀𝑥𝜑)) |
3 | 2 | alimi 1443 | . . . 4 ⊢ (∀𝑦Ⅎ𝑥𝜑 → ∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑)) |
4 | ax-7 1436 | . . . 4 ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)) | |
5 | ax-5 1435 | . . . . . 6 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑)) | |
6 | ax-7 1436 | . . . . . 6 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
7 | 5, 6 | syl6 33 | . . . . 5 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
8 | 7 | alimi 1443 | . . . 4 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
9 | 3, 4, 8 | 3syl 17 | . . 3 ⊢ (∀𝑦Ⅎ𝑥𝜑 → ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
10 | df-nf 1449 | . . 3 ⊢ (Ⅎ𝑥∀𝑦𝜑 ↔ ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | |
11 | 9, 10 | sylibr 133 | . 2 ⊢ (∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥∀𝑦𝜑) |
12 | nfal.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
13 | 11, 12 | mpg 1439 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: nfnf 1565 nfa2 1567 aaan 1575 cbv3 1730 cbv2 1737 nfald 1748 cbval2 1909 nfsb4t 2002 nfeuv 2032 mo23 2055 bm1.1 2150 nfnfc1 2311 nfnfc 2315 nfeq 2316 nfabdw 2327 sbcnestgf 3096 dfnfc2 3807 nfdisjv 3971 nfdisj1 3972 nffr 4327 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 exmidunben 12359 bdsepnft 13769 bdsepnfALT 13771 setindft 13847 strcollnft 13866 pw1nct 13883 |
Copyright terms: Public domain | W3C validator |