| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfal | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-4 1524. (Revised by GG, 25-Aug-2024.) |
| Ref | Expression |
|---|---|
| nfal.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1475 | . . . . . 6 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | 1 | biimpi 120 | . . . . 5 ⊢ (Ⅎ𝑥𝜑 → ∀𝑥(𝜑 → ∀𝑥𝜑)) |
| 3 | 2 | alimi 1469 | . . . 4 ⊢ (∀𝑦Ⅎ𝑥𝜑 → ∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑)) |
| 4 | ax-7 1462 | . . . 4 ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)) | |
| 5 | ax-5 1461 | . . . . . 6 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑)) | |
| 6 | ax-7 1462 | . . . . . 6 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 7 | 5, 6 | syl6 33 | . . . . 5 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| 8 | 7 | alimi 1469 | . . . 4 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| 9 | 3, 4, 8 | 3syl 17 | . . 3 ⊢ (∀𝑦Ⅎ𝑥𝜑 → ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| 10 | df-nf 1475 | . . 3 ⊢ (Ⅎ𝑥∀𝑦𝜑 ↔ ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | |
| 11 | 9, 10 | sylibr 134 | . 2 ⊢ (∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥∀𝑦𝜑) |
| 12 | nfal.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 13 | 11, 12 | mpg 1465 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: nfnf 1591 nfa2 1593 aaan 1601 cbv3 1756 cbv2 1763 nfald 1774 cbval2 1936 nfsb4t 2033 nfeuv 2063 mo23 2086 bm1.1 2181 nfnfc1 2342 nfnfc 2346 nfeq 2347 nfabdw 2358 sbcnestgf 3136 dfnfc2 3857 nfdisjv 4022 nfdisj1 4023 nffr 4384 uchoice 6195 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 exmidunben 12643 bdsepnft 15533 bdsepnfALT 15535 setindft 15611 strcollnft 15630 pw1nct 15647 |
| Copyright terms: Public domain | W3C validator |