ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfal GIF version

Theorem nfal 1600
Description: If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-4 1534. (Revised by GG, 25-Aug-2024.)
Hypothesis
Ref Expression
nfal.1 𝑥𝜑
Assertion
Ref Expression
nfal 𝑥𝑦𝜑

Proof of Theorem nfal
StepHypRef Expression
1 df-nf 1485 . . . . . 6 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
21biimpi 120 . . . . 5 (Ⅎ𝑥𝜑 → ∀𝑥(𝜑 → ∀𝑥𝜑))
32alimi 1479 . . . 4 (∀𝑦𝑥𝜑 → ∀𝑦𝑥(𝜑 → ∀𝑥𝜑))
4 ax-7 1472 . . . 4 (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(𝜑 → ∀𝑥𝜑))
5 ax-5 1471 . . . . . 6 (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦𝑥𝜑))
6 ax-7 1472 . . . . . 6 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
75, 6syl6 33 . . . . 5 (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥𝑦𝜑))
87alimi 1479 . . . 4 (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
93, 4, 83syl 17 . . 3 (∀𝑦𝑥𝜑 → ∀𝑥(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
10 df-nf 1485 . . 3 (Ⅎ𝑥𝑦𝜑 ↔ ∀𝑥(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
119, 10sylibr 134 . 2 (∀𝑦𝑥𝜑 → Ⅎ𝑥𝑦𝜑)
12 nfal.1 . 2 𝑥𝜑
1311, 12mpg 1475 1 𝑥𝑦𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wnf 1484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473
This theorem depends on definitions:  df-bi 117  df-nf 1485
This theorem is referenced by:  nfnf  1601  nfa2  1603  aaan  1611  cbv3  1766  cbv2  1773  nfald  1784  cbval2  1946  nfsb4t  2043  nfeuv  2073  mo23  2096  bm1.1  2191  nfnfc1  2352  nfnfc  2356  nfeq  2357  nfabdw  2368  sbcnestgf  3149  dfnfc2  3877  nfdisjv  4042  nfdisj1  4043  nffr  4409  uchoice  6241  exmidfodomrlemr  7336  exmidfodomrlemrALT  7337  exmidunben  12882  bdsepnft  15992  bdsepnfALT  15994  setindft  16070  strcollnft  16089  pw1nct  16112
  Copyright terms: Public domain W3C validator