| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfal | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-4 1556. (Revised by GG, 25-Aug-2024.) |
| Ref | Expression |
|---|---|
| nfal.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1507 | . . . . . 6 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | 1 | biimpi 120 | . . . . 5 ⊢ (Ⅎ𝑥𝜑 → ∀𝑥(𝜑 → ∀𝑥𝜑)) |
| 3 | 2 | alimi 1501 | . . . 4 ⊢ (∀𝑦Ⅎ𝑥𝜑 → ∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑)) |
| 4 | ax-7 1494 | . . . 4 ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)) | |
| 5 | ax-5 1493 | . . . . . 6 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑)) | |
| 6 | ax-7 1494 | . . . . . 6 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 7 | 5, 6 | syl6 33 | . . . . 5 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| 8 | 7 | alimi 1501 | . . . 4 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| 9 | 3, 4, 8 | 3syl 17 | . . 3 ⊢ (∀𝑦Ⅎ𝑥𝜑 → ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
| 10 | df-nf 1507 | . . 3 ⊢ (Ⅎ𝑥∀𝑦𝜑 ↔ ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | |
| 11 | 9, 10 | sylibr 134 | . 2 ⊢ (∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥∀𝑦𝜑) |
| 12 | nfal.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 13 | 11, 12 | mpg 1497 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 Ⅎwnf 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: nfnf 1623 nfa2 1625 aaan 1633 cbv3 1788 cbv2 1795 nfald 1806 cbval2 1968 nfsb4t 2065 nfeuv 2095 mo23 2119 bm1.1 2214 nfnfc1 2375 nfnfc 2379 nfeq 2380 nfabdw 2391 sbcnestgf 3176 dfnfc2 3905 nfdisjv 4070 nfdisj1 4071 nffr 4439 uchoice 6281 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 exmidunben 12992 bdsepnft 16208 bdsepnfALT 16210 setindft 16286 strcollnft 16305 pw1nct 16328 |
| Copyright terms: Public domain | W3C validator |