![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfal | GIF version |
Description: If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-4 1521. (Revised by GG, 25-Aug-2024.) |
Ref | Expression |
---|---|
nfal.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1472 | . . . . . 6 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | 1 | biimpi 120 | . . . . 5 ⊢ (Ⅎ𝑥𝜑 → ∀𝑥(𝜑 → ∀𝑥𝜑)) |
3 | 2 | alimi 1466 | . . . 4 ⊢ (∀𝑦Ⅎ𝑥𝜑 → ∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑)) |
4 | ax-7 1459 | . . . 4 ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)) | |
5 | ax-5 1458 | . . . . . 6 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑)) | |
6 | ax-7 1459 | . . . . . 6 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
7 | 5, 6 | syl6 33 | . . . . 5 ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
8 | 7 | alimi 1466 | . . . 4 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
9 | 3, 4, 8 | 3syl 17 | . . 3 ⊢ (∀𝑦Ⅎ𝑥𝜑 → ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
10 | df-nf 1472 | . . 3 ⊢ (Ⅎ𝑥∀𝑦𝜑 ↔ ∀𝑥(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | |
11 | 9, 10 | sylibr 134 | . 2 ⊢ (∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥∀𝑦𝜑) |
12 | nfal.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
13 | 11, 12 | mpg 1462 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: nfnf 1588 nfa2 1590 aaan 1598 cbv3 1753 cbv2 1760 nfald 1771 cbval2 1933 nfsb4t 2030 nfeuv 2060 mo23 2083 bm1.1 2178 nfnfc1 2339 nfnfc 2343 nfeq 2344 nfabdw 2355 sbcnestgf 3132 dfnfc2 3853 nfdisjv 4018 nfdisj1 4019 nffr 4380 uchoice 6190 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 exmidunben 12583 bdsepnft 15379 bdsepnfALT 15381 setindft 15457 strcollnft 15476 pw1nct 15493 |
Copyright terms: Public domain | W3C validator |