ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanprlemu GIF version

Theorem addcanprlemu 7416
Description: Lemma for addcanprg 7417. (Contributed by Jim Kingdon, 25-Dec-2019.)
Assertion
Ref Expression
addcanprlemu (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) ⊆ (2nd𝐶))

Proof of Theorem addcanprlemu
Dummy variables 𝑓 𝑔 𝑞 𝑟 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7276 . . . . . . 7 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 prnminu 7290 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑣 ∈ (2nd𝐵)) → ∃𝑟 ∈ (2nd𝐵)𝑟 <Q 𝑣)
31, 2sylan 281 . . . . . 6 ((𝐵P𝑣 ∈ (2nd𝐵)) → ∃𝑟 ∈ (2nd𝐵)𝑟 <Q 𝑣)
433ad2antl2 1144 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ 𝑣 ∈ (2nd𝐵)) → ∃𝑟 ∈ (2nd𝐵)𝑟 <Q 𝑣)
54adantlr 468 . . . 4 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) → ∃𝑟 ∈ (2nd𝐵)𝑟 <Q 𝑣)
6 simprr 521 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → 𝑟 <Q 𝑣)
7 ltexnqi 7210 . . . . . 6 (𝑟 <Q 𝑣 → ∃𝑤Q (𝑟 +Q 𝑤) = 𝑣)
86, 7syl 14 . . . . 5 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → ∃𝑤Q (𝑟 +Q 𝑤) = 𝑣)
9 simprl 520 . . . . . . 7 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) → 𝑤Q)
10 halfnqq 7211 . . . . . . 7 (𝑤Q → ∃𝑡Q (𝑡 +Q 𝑡) = 𝑤)
119, 10syl 14 . . . . . 6 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) → ∃𝑡Q (𝑡 +Q 𝑡) = 𝑤)
12 prop 7276 . . . . . . . . . . . . . 14 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
13 prarloc2 7305 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑡Q) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1412, 13sylan 281 . . . . . . . . . . . . 13 ((𝐴P𝑡Q) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1514adantrr 470 . . . . . . . . . . . 12 ((𝐴P ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
16153ad2antl1 1143 . . . . . . . . . . 11 (((𝐴P𝐵P𝐶P) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1716adantlr 468 . . . . . . . . . 10 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1817adantlr 468 . . . . . . . . 9 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1918adantlr 468 . . . . . . . 8 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
2019adantlr 468 . . . . . . 7 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
21 simplll 522 . . . . . . . . . . . . . 14 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → (𝐴P𝐵P𝐶P))
2221ad3antrrr 483 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝐴P𝐵P𝐶P))
2322simp1d 993 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐴P)
2422simp2d 994 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐵P)
25 addclpr 7338 . . . . . . . . . . . 12 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
2623, 24, 25syl2anc 408 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝐴 +P 𝐵) ∈ P)
27 prop 7276 . . . . . . . . . . 11 ((𝐴 +P 𝐵) ∈ P → ⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P)
2826, 27syl 14 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P)
2923, 12syl 14 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
30 simprl 520 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑢 ∈ (1st𝐴))
31 elprnql 7282 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (1st𝐴)) → 𝑢Q)
3229, 30, 31syl2anc 408 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑢Q)
33 simplrl 524 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑡Q)
34 addclnq 7176 . . . . . . . . . . . 12 ((𝑢Q𝑡Q) → (𝑢 +Q 𝑡) ∈ Q)
3532, 33, 34syl2anc 408 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑢 +Q 𝑡) ∈ Q)
3624, 1syl 14 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
37 simprl 520 . . . . . . . . . . . . 13 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → 𝑟 ∈ (2nd𝐵))
3837ad3antrrr 483 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑟 ∈ (2nd𝐵))
39 elprnqu 7283 . . . . . . . . . . . 12 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑟 ∈ (2nd𝐵)) → 𝑟Q)
4036, 38, 39syl2anc 408 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑟Q)
41 addclnq 7176 . . . . . . . . . . 11 (((𝑢 +Q 𝑡) ∈ Q𝑟Q) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ Q)
4235, 40, 41syl2anc 408 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ Q)
43 prdisj 7293 . . . . . . . . . 10 ((⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P ∧ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ Q) → ¬ (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
4428, 42, 43syl2anc 408 . . . . . . . . 9 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ¬ (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
45 addassnqg 7183 . . . . . . . . . . . . . . 15 ((𝑢Q𝑡Q𝑟Q) → ((𝑢 +Q 𝑡) +Q 𝑟) = (𝑢 +Q (𝑡 +Q 𝑟)))
4632, 33, 40, 45syl3anc 1216 . . . . . . . . . . . . . 14 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) = (𝑢 +Q (𝑡 +Q 𝑟)))
47 addcomnqg 7182 . . . . . . . . . . . . . . . 16 ((𝑡Q𝑟Q) → (𝑡 +Q 𝑟) = (𝑟 +Q 𝑡))
4847oveq2d 5783 . . . . . . . . . . . . . . 15 ((𝑡Q𝑟Q) → (𝑢 +Q (𝑡 +Q 𝑟)) = (𝑢 +Q (𝑟 +Q 𝑡)))
4933, 40, 48syl2anc 408 . . . . . . . . . . . . . 14 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑢 +Q (𝑡 +Q 𝑟)) = (𝑢 +Q (𝑟 +Q 𝑡)))
5046, 49eqtrd 2170 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) = (𝑢 +Q (𝑟 +Q 𝑡)))
5150adantr 274 . . . . . . . . . . . 12 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 +Q 𝑡) +Q 𝑟) = (𝑢 +Q (𝑟 +Q 𝑡)))
52 simplrl 524 . . . . . . . . . . . . 13 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → 𝑢 ∈ (1st𝐴))
53 simpr 109 . . . . . . . . . . . . 13 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (𝑟 +Q 𝑡) ∈ (1st𝐶))
5423adantr 274 . . . . . . . . . . . . . 14 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → 𝐴P)
5522simp3d 995 . . . . . . . . . . . . . . 15 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐶P)
5655adantr 274 . . . . . . . . . . . . . 14 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → 𝐶P)
57 df-iplp 7269 . . . . . . . . . . . . . . 15 +P = (𝑞P, 𝑠P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑞) ∧ ∈ (1st𝑠) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑞) ∧ ∈ (2nd𝑠) ∧ 𝑓 = (𝑔 +Q ))}⟩)
58 addclnq 7176 . . . . . . . . . . . . . . 15 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
5957, 58genpprecll 7315 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → ((𝑢 ∈ (1st𝐴) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (𝑢 +Q (𝑟 +Q 𝑡)) ∈ (1st ‘(𝐴 +P 𝐶))))
6054, 56, 59syl2anc 408 . . . . . . . . . . . . 13 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 ∈ (1st𝐴) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (𝑢 +Q (𝑟 +Q 𝑡)) ∈ (1st ‘(𝐴 +P 𝐶))))
6152, 53, 60mp2and 429 . . . . . . . . . . . 12 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (𝑢 +Q (𝑟 +Q 𝑡)) ∈ (1st ‘(𝐴 +P 𝐶)))
6251, 61eqeltrd 2214 . . . . . . . . . . 11 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐶)))
63 fveq2 5414 . . . . . . . . . . . . 13 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → (1st ‘(𝐴 +P 𝐵)) = (1st ‘(𝐴 +P 𝐶)))
6463eleq2d 2207 . . . . . . . . . . . 12 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐶))))
6564ad7antlr 492 . . . . . . . . . . 11 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐶))))
6662, 65mpbird 166 . . . . . . . . . 10 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)))
6757, 58genppreclu 7316 . . . . . . . . . . . . . . . . . . 19 ((𝐴P𝐵P) → (((𝑢 +Q 𝑡) ∈ (2nd𝐴) ∧ 𝑟 ∈ (2nd𝐵)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
6867ancomsd 267 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝐵P) → ((𝑟 ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
69683adant3 1001 . . . . . . . . . . . . . . . . 17 ((𝐴P𝐵P𝐶P) → ((𝑟 ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
7069ad2antrr 479 . . . . . . . . . . . . . . . 16 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) → ((𝑟 ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
7170imp 123 . . . . . . . . . . . . . . 15 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7271adantrlr 476 . . . . . . . . . . . . . 14 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ ((𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7372anassrs 397 . . . . . . . . . . . . 13 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7473ad2ant2rl 502 . . . . . . . . . . . 12 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7574adantlr 468 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7675adantr 274 . . . . . . . . . 10 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7766, 76jca 304 . . . . . . . . 9 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
7844, 77mtand 654 . . . . . . . 8 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ¬ (𝑟 +Q 𝑡) ∈ (1st𝐶))
79 prop 7276 . . . . . . . . . . 11 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
8055, 79syl 14 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
81 ltaddnq 7208 . . . . . . . . . . . . . 14 ((𝑡Q𝑡Q) → 𝑡 <Q (𝑡 +Q 𝑡))
8233, 33, 81syl2anc 408 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑡 <Q (𝑡 +Q 𝑡))
83 simplrr 525 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑡 +Q 𝑡) = 𝑤)
8482, 83breqtrd 3949 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑡 <Q 𝑤)
85 ltanqi 7203 . . . . . . . . . . . 12 ((𝑡 <Q 𝑤𝑟Q) → (𝑟 +Q 𝑡) <Q (𝑟 +Q 𝑤))
8684, 40, 85syl2anc 408 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑟 +Q 𝑡) <Q (𝑟 +Q 𝑤))
87 simprr 521 . . . . . . . . . . . 12 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) → (𝑟 +Q 𝑤) = 𝑣)
8887ad2antrr 479 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑟 +Q 𝑤) = 𝑣)
8986, 88breqtrd 3949 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑟 +Q 𝑡) <Q 𝑣)
90 prloc 7292 . . . . . . . . . 10 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P ∧ (𝑟 +Q 𝑡) <Q 𝑣) → ((𝑟 +Q 𝑡) ∈ (1st𝐶) ∨ 𝑣 ∈ (2nd𝐶)))
9180, 89, 90syl2anc 408 . . . . . . . . 9 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑟 +Q 𝑡) ∈ (1st𝐶) ∨ 𝑣 ∈ (2nd𝐶)))
9291orcomd 718 . . . . . . . 8 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑣 ∈ (2nd𝐶) ∨ (𝑟 +Q 𝑡) ∈ (1st𝐶)))
9378, 92ecased 1327 . . . . . . 7 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑣 ∈ (2nd𝐶))
9420, 93rexlimddv 2552 . . . . . 6 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → 𝑣 ∈ (2nd𝐶))
9511, 94rexlimddv 2552 . . . . 5 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) → 𝑣 ∈ (2nd𝐶))
968, 95rexlimddv 2552 . . . 4 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → 𝑣 ∈ (2nd𝐶))
975, 96rexlimddv 2552 . . 3 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) → 𝑣 ∈ (2nd𝐶))
9897ex 114 . 2 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (𝑣 ∈ (2nd𝐵) → 𝑣 ∈ (2nd𝐶)))
9998ssrdv 3098 1 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) ⊆ (2nd𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480  wrex 2415  wss 3066  cop 3525   class class class wbr 3924  cfv 5118  (class class class)co 5767  1st c1st 6029  2nd c2nd 6030  Qcnq 7081   +Q cplq 7083   <Q cltq 7086  Pcnp 7092   +P cpp 7094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-plq0 7228  df-mq0 7229  df-inp 7267  df-iplp 7269
This theorem is referenced by:  addcanprg  7417
  Copyright terms: Public domain W3C validator