| Step | Hyp | Ref
 | Expression | 
| 1 |   | prop 7542 | 
. . . . . . 7
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) | 
| 2 |   | prnminu 7556 | 
. . . . . . 7
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑣 ∈ (2nd
‘𝐵)) →
∃𝑟 ∈
(2nd ‘𝐵)𝑟 <Q 𝑣) | 
| 3 | 1, 2 | sylan 283 | 
. . . . . 6
⊢ ((𝐵 ∈ P ∧
𝑣 ∈ (2nd
‘𝐵)) →
∃𝑟 ∈
(2nd ‘𝐵)𝑟 <Q 𝑣) | 
| 4 | 3 | 3ad2antl2 1162 | 
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ 𝑣
∈ (2nd ‘𝐵)) → ∃𝑟 ∈ (2nd ‘𝐵)𝑟 <Q 𝑣) | 
| 5 | 4 | adantlr 477 | 
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝐴
+P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) → ∃𝑟 ∈ (2nd
‘𝐵)𝑟 <Q 𝑣) | 
| 6 |   | simprr 531 | 
. . . . . 6
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) → 𝑟 <Q 𝑣) | 
| 7 |   | ltexnqi 7476 | 
. . . . . 6
⊢ (𝑟 <Q
𝑣 → ∃𝑤 ∈ Q (𝑟 +Q
𝑤) = 𝑣) | 
| 8 | 6, 7 | syl 14 | 
. . . . 5
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) → ∃𝑤 ∈ Q (𝑟 +Q
𝑤) = 𝑣) | 
| 9 |   | simprl 529 | 
. . . . . . 7
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) → 𝑤 ∈ Q) | 
| 10 |   | halfnqq 7477 | 
. . . . . . 7
⊢ (𝑤 ∈ Q →
∃𝑡 ∈
Q (𝑡
+Q 𝑡) = 𝑤) | 
| 11 | 9, 10 | syl 14 | 
. . . . . 6
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) → ∃𝑡 ∈ Q (𝑡 +Q 𝑡) = 𝑤) | 
| 12 |   | prop 7542 | 
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) | 
| 13 |   | prarloc2 7571 | 
. . . . . . . . . . . . . 14
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑡 ∈ Q) →
∃𝑢 ∈
(1st ‘𝐴)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) | 
| 14 | 12, 13 | sylan 283 | 
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ P ∧
𝑡 ∈ Q)
→ ∃𝑢 ∈
(1st ‘𝐴)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) | 
| 15 | 14 | adantrr 479 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ P ∧
(𝑡 ∈ Q
∧ (𝑡
+Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st ‘𝐴)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) | 
| 16 | 15 | 3ad2antl1 1161 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝑡
∈ Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st ‘𝐴)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) | 
| 17 | 16 | adantlr 477 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝐴
+P 𝐵) = (𝐴 +P 𝐶)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) → ∃𝑢 ∈ (1st ‘𝐴)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) | 
| 18 | 17 | adantlr 477 | 
. . . . . . . . 9
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) → ∃𝑢 ∈ (1st ‘𝐴)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) | 
| 19 | 18 | adantlr 477 | 
. . . . . . . 8
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) → ∃𝑢 ∈ (1st ‘𝐴)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) | 
| 20 | 19 | adantlr 477 | 
. . . . . . 7
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) → ∃𝑢 ∈ (1st ‘𝐴)(𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) | 
| 21 |   | simplll 533 | 
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) → (𝐴 ∈ P ∧ 𝐵 ∈ P ∧
𝐶 ∈
P)) | 
| 22 | 21 | ad3antrrr 492 | 
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P)) | 
| 23 | 22 | simp1d 1011 | 
. . . . . . . . . . . 12
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝐴 ∈
P) | 
| 24 | 22 | simp2d 1012 | 
. . . . . . . . . . . 12
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝐵 ∈
P) | 
| 25 |   | addclpr 7604 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝐴
+P 𝐵) ∈ P) | 
| 26 | 23, 24, 25 | syl2anc 411 | 
. . . . . . . . . . 11
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝐴 +P
𝐵) ∈
P) | 
| 27 |   | prop 7542 | 
. . . . . . . . . . 11
⊢ ((𝐴 +P
𝐵) ∈ P
→ 〈(1st ‘(𝐴 +P 𝐵)), (2nd
‘(𝐴
+P 𝐵))〉 ∈
P) | 
| 28 | 26, 27 | syl 14 | 
. . . . . . . . . 10
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) →
〈(1st ‘(𝐴 +P 𝐵)), (2nd
‘(𝐴
+P 𝐵))〉 ∈
P) | 
| 29 | 23, 12 | syl 14 | 
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) | 
| 30 |   | simprl 529 | 
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑢 ∈ (1st
‘𝐴)) | 
| 31 |   | elprnql 7548 | 
. . . . . . . . . . . . 13
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑢 ∈ (1st
‘𝐴)) → 𝑢 ∈
Q) | 
| 32 | 29, 30, 31 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑢 ∈
Q) | 
| 33 |   | simplrl 535 | 
. . . . . . . . . . . 12
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑡 ∈
Q) | 
| 34 |   | addclnq 7442 | 
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ Q ∧
𝑡 ∈ Q)
→ (𝑢
+Q 𝑡) ∈ Q) | 
| 35 | 32, 33, 34 | syl2anc 411 | 
. . . . . . . . . . 11
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑢 +Q
𝑡) ∈
Q) | 
| 36 | 24, 1 | syl 14 | 
. . . . . . . . . . . 12
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) | 
| 37 |   | simprl 529 | 
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) → 𝑟 ∈ (2nd ‘𝐵)) | 
| 38 | 37 | ad3antrrr 492 | 
. . . . . . . . . . . 12
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑟 ∈ (2nd
‘𝐵)) | 
| 39 |   | elprnqu 7549 | 
. . . . . . . . . . . 12
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑟 ∈ (2nd
‘𝐵)) → 𝑟 ∈
Q) | 
| 40 | 36, 38, 39 | syl2anc 411 | 
. . . . . . . . . . 11
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑟 ∈
Q) | 
| 41 |   | addclnq 7442 | 
. . . . . . . . . . 11
⊢ (((𝑢 +Q
𝑡) ∈ Q
∧ 𝑟 ∈
Q) → ((𝑢
+Q 𝑡) +Q 𝑟) ∈
Q) | 
| 42 | 35, 40, 41 | syl2anc 411 | 
. . . . . . . . . 10
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → ((𝑢 +Q
𝑡)
+Q 𝑟) ∈ Q) | 
| 43 |   | prdisj 7559 | 
. . . . . . . . . 10
⊢
((〈(1st ‘(𝐴 +P 𝐵)), (2nd
‘(𝐴
+P 𝐵))〉 ∈ P ∧
((𝑢
+Q 𝑡) +Q 𝑟) ∈ Q) →
¬ (((𝑢
+Q 𝑡) +Q 𝑟) ∈ (1st
‘(𝐴
+P 𝐵)) ∧ ((𝑢 +Q 𝑡) +Q
𝑟) ∈ (2nd
‘(𝐴
+P 𝐵)))) | 
| 44 | 28, 42, 43 | syl2anc 411 | 
. . . . . . . . 9
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → ¬
(((𝑢
+Q 𝑡) +Q 𝑟) ∈ (1st
‘(𝐴
+P 𝐵)) ∧ ((𝑢 +Q 𝑡) +Q
𝑟) ∈ (2nd
‘(𝐴
+P 𝐵)))) | 
| 45 |   | addassnqg 7449 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ Q ∧
𝑡 ∈ Q
∧ 𝑟 ∈
Q) → ((𝑢
+Q 𝑡) +Q 𝑟) = (𝑢 +Q (𝑡 +Q
𝑟))) | 
| 46 | 32, 33, 40, 45 | syl3anc 1249 | 
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → ((𝑢 +Q
𝑡)
+Q 𝑟) = (𝑢 +Q (𝑡 +Q
𝑟))) | 
| 47 |   | addcomnqg 7448 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∈ Q ∧
𝑟 ∈ Q)
→ (𝑡
+Q 𝑟) = (𝑟 +Q 𝑡)) | 
| 48 | 47 | oveq2d 5938 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ Q ∧
𝑟 ∈ Q)
→ (𝑢
+Q (𝑡 +Q 𝑟)) = (𝑢 +Q (𝑟 +Q
𝑡))) | 
| 49 | 33, 40, 48 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑢 +Q
(𝑡
+Q 𝑟)) = (𝑢 +Q (𝑟 +Q
𝑡))) | 
| 50 | 46, 49 | eqtrd 2229 | 
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → ((𝑢 +Q
𝑡)
+Q 𝑟) = (𝑢 +Q (𝑟 +Q
𝑡))) | 
| 51 | 50 | adantr 276 | 
. . . . . . . . . . . 12
⊢
(((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ (𝑟 +Q
𝑡) ∈ (1st
‘𝐶)) → ((𝑢 +Q
𝑡)
+Q 𝑟) = (𝑢 +Q (𝑟 +Q
𝑡))) | 
| 52 |   | simplrl 535 | 
. . . . . . . . . . . . 13
⊢
(((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ (𝑟 +Q
𝑡) ∈ (1st
‘𝐶)) → 𝑢 ∈ (1st
‘𝐴)) | 
| 53 |   | simpr 110 | 
. . . . . . . . . . . . 13
⊢
(((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ (𝑟 +Q
𝑡) ∈ (1st
‘𝐶)) → (𝑟 +Q
𝑡) ∈ (1st
‘𝐶)) | 
| 54 | 23 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢
(((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ (𝑟 +Q
𝑡) ∈ (1st
‘𝐶)) → 𝐴 ∈
P) | 
| 55 | 22 | simp3d 1013 | 
. . . . . . . . . . . . . . 15
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝐶 ∈
P) | 
| 56 | 55 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢
(((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ (𝑟 +Q
𝑡) ∈ (1st
‘𝐶)) → 𝐶 ∈
P) | 
| 57 |   | df-iplp 7535 | 
. . . . . . . . . . . . . . 15
⊢ 
+P = (𝑞 ∈ P, 𝑠 ∈ P ↦ 〈{𝑓 ∈ Q ∣
∃𝑔 ∈
Q ∃ℎ
∈ Q (𝑔
∈ (1st ‘𝑞) ∧ ℎ ∈ (1st ‘𝑠) ∧ 𝑓 = (𝑔 +Q ℎ))}, {𝑓 ∈ Q ∣ ∃𝑔 ∈ Q
∃ℎ ∈
Q (𝑔 ∈
(2nd ‘𝑞)
∧ ℎ ∈
(2nd ‘𝑠)
∧ 𝑓 = (𝑔 +Q
ℎ))}〉) | 
| 58 |   | addclnq 7442 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑔 ∈ Q ∧
ℎ ∈ Q)
→ (𝑔
+Q ℎ) ∈ Q) | 
| 59 | 57, 58 | genpprecll 7581 | 
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ P ∧
𝐶 ∈ P)
→ ((𝑢 ∈
(1st ‘𝐴)
∧ (𝑟
+Q 𝑡) ∈ (1st ‘𝐶)) → (𝑢 +Q (𝑟 +Q
𝑡)) ∈ (1st
‘(𝐴
+P 𝐶)))) | 
| 60 | 54, 56, 59 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢
(((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ (𝑟 +Q
𝑡) ∈ (1st
‘𝐶)) → ((𝑢 ∈ (1st
‘𝐴) ∧ (𝑟 +Q
𝑡) ∈ (1st
‘𝐶)) → (𝑢 +Q
(𝑟
+Q 𝑡)) ∈ (1st ‘(𝐴 +P
𝐶)))) | 
| 61 | 52, 53, 60 | mp2and 433 | 
. . . . . . . . . . . 12
⊢
(((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ (𝑟 +Q
𝑡) ∈ (1st
‘𝐶)) → (𝑢 +Q
(𝑟
+Q 𝑡)) ∈ (1st ‘(𝐴 +P
𝐶))) | 
| 62 | 51, 61 | eqeltrd 2273 | 
. . . . . . . . . . 11
⊢
(((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ (𝑟 +Q
𝑡) ∈ (1st
‘𝐶)) → ((𝑢 +Q
𝑡)
+Q 𝑟) ∈ (1st ‘(𝐴 +P
𝐶))) | 
| 63 |   | fveq2 5558 | 
. . . . . . . . . . . . 13
⊢ ((𝐴 +P
𝐵) = (𝐴 +P 𝐶) → (1st
‘(𝐴
+P 𝐵)) = (1st ‘(𝐴 +P
𝐶))) | 
| 64 | 63 | eleq2d 2266 | 
. . . . . . . . . . . 12
⊢ ((𝐴 +P
𝐵) = (𝐴 +P 𝐶) → (((𝑢 +Q 𝑡) +Q
𝑟) ∈ (1st
‘(𝐴
+P 𝐵)) ↔ ((𝑢 +Q 𝑡) +Q
𝑟) ∈ (1st
‘(𝐴
+P 𝐶)))) | 
| 65 | 64 | ad7antlr 501 | 
. . . . . . . . . . 11
⊢
(((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ (𝑟 +Q
𝑡) ∈ (1st
‘𝐶)) → (((𝑢 +Q
𝑡)
+Q 𝑟) ∈ (1st ‘(𝐴 +P
𝐵)) ↔ ((𝑢 +Q
𝑡)
+Q 𝑟) ∈ (1st ‘(𝐴 +P
𝐶)))) | 
| 66 | 62, 65 | mpbird 167 | 
. . . . . . . . . 10
⊢
(((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ (𝑟 +Q
𝑡) ∈ (1st
‘𝐶)) → ((𝑢 +Q
𝑡)
+Q 𝑟) ∈ (1st ‘(𝐴 +P
𝐵))) | 
| 67 | 57, 58 | genppreclu 7582 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (((𝑢
+Q 𝑡) ∈ (2nd ‘𝐴) ∧ 𝑟 ∈ (2nd ‘𝐵)) → ((𝑢 +Q 𝑡) +Q
𝑟) ∈ (2nd
‘(𝐴
+P 𝐵)))) | 
| 68 | 67 | ancomsd 269 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ((𝑟 ∈
(2nd ‘𝐵)
∧ (𝑢
+Q 𝑡) ∈ (2nd ‘𝐴)) → ((𝑢 +Q 𝑡) +Q
𝑟) ∈ (2nd
‘(𝐴
+P 𝐵)))) | 
| 69 | 68 | 3adant3 1019 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → ((𝑟
∈ (2nd ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) → ((𝑢 +Q
𝑡)
+Q 𝑟) ∈ (2nd ‘(𝐴 +P
𝐵)))) | 
| 70 | 69 | ad2antrr 488 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝐴
+P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) → ((𝑟 ∈ (2nd ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) → ((𝑢 +Q
𝑡)
+Q 𝑟) ∈ (2nd ‘(𝐴 +P
𝐵)))) | 
| 71 | 70 | imp 124 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → ((𝑢 +Q
𝑡)
+Q 𝑟) ∈ (2nd ‘(𝐴 +P
𝐵))) | 
| 72 | 71 | adantrlr 485 | 
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ ((𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → ((𝑢 +Q
𝑡)
+Q 𝑟) ∈ (2nd ‘(𝐴 +P
𝐵))) | 
| 73 | 72 | anassrs 400 | 
. . . . . . . . . . . . 13
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴)) → ((𝑢 +Q
𝑡)
+Q 𝑟) ∈ (2nd ‘(𝐴 +P
𝐵))) | 
| 74 | 73 | ad2ant2rl 511 | 
. . . . . . . . . . . 12
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → ((𝑢 +Q
𝑡)
+Q 𝑟) ∈ (2nd ‘(𝐴 +P
𝐵))) | 
| 75 | 74 | adantlr 477 | 
. . . . . . . . . . 11
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → ((𝑢 +Q
𝑡)
+Q 𝑟) ∈ (2nd ‘(𝐴 +P
𝐵))) | 
| 76 | 75 | adantr 276 | 
. . . . . . . . . 10
⊢
(((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ (𝑟 +Q
𝑡) ∈ (1st
‘𝐶)) → ((𝑢 +Q
𝑡)
+Q 𝑟) ∈ (2nd ‘(𝐴 +P
𝐵))) | 
| 77 | 66, 76 | jca 306 | 
. . . . . . . . 9
⊢
(((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) ∧ (𝑟 +Q
𝑡) ∈ (1st
‘𝐶)) → (((𝑢 +Q
𝑡)
+Q 𝑟) ∈ (1st ‘(𝐴 +P
𝐵)) ∧ ((𝑢 +Q
𝑡)
+Q 𝑟) ∈ (2nd ‘(𝐴 +P
𝐵)))) | 
| 78 | 44, 77 | mtand 666 | 
. . . . . . . 8
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → ¬
(𝑟
+Q 𝑡) ∈ (1st ‘𝐶)) | 
| 79 |   | prop 7542 | 
. . . . . . . . . . 11
⊢ (𝐶 ∈ P →
〈(1st ‘𝐶), (2nd ‘𝐶)〉 ∈
P) | 
| 80 | 55, 79 | syl 14 | 
. . . . . . . . . 10
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) →
〈(1st ‘𝐶), (2nd ‘𝐶)〉 ∈
P) | 
| 81 |   | ltaddnq 7474 | 
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ Q ∧
𝑡 ∈ Q)
→ 𝑡
<Q (𝑡 +Q 𝑡)) | 
| 82 | 33, 33, 81 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑡 <Q
(𝑡
+Q 𝑡)) | 
| 83 |   | simplrr 536 | 
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑡 +Q
𝑡) = 𝑤) | 
| 84 | 82, 83 | breqtrd 4059 | 
. . . . . . . . . . . 12
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑡 <Q
𝑤) | 
| 85 |   | ltanqi 7469 | 
. . . . . . . . . . . 12
⊢ ((𝑡 <Q
𝑤 ∧ 𝑟 ∈ Q) → (𝑟 +Q
𝑡)
<Q (𝑟 +Q 𝑤)) | 
| 86 | 84, 40, 85 | syl2anc 411 | 
. . . . . . . . . . 11
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑟 +Q
𝑡)
<Q (𝑟 +Q 𝑤)) | 
| 87 |   | simprr 531 | 
. . . . . . . . . . . 12
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) → (𝑟 +Q 𝑤) = 𝑣) | 
| 88 | 87 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑟 +Q
𝑤) = 𝑣) | 
| 89 | 86, 88 | breqtrd 4059 | 
. . . . . . . . . 10
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑟 +Q
𝑡)
<Q 𝑣) | 
| 90 |   | prloc 7558 | 
. . . . . . . . . 10
⊢
((〈(1st ‘𝐶), (2nd ‘𝐶)〉 ∈ P ∧ (𝑟 +Q
𝑡)
<Q 𝑣) → ((𝑟 +Q 𝑡) ∈ (1st
‘𝐶) ∨ 𝑣 ∈ (2nd
‘𝐶))) | 
| 91 | 80, 89, 90 | syl2anc 411 | 
. . . . . . . . 9
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → ((𝑟 +Q
𝑡) ∈ (1st
‘𝐶) ∨ 𝑣 ∈ (2nd
‘𝐶))) | 
| 92 | 91 | orcomd 730 | 
. . . . . . . 8
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → (𝑣 ∈ (2nd
‘𝐶) ∨ (𝑟 +Q
𝑡) ∈ (1st
‘𝐶))) | 
| 93 | 78, 92 | ecased 1360 | 
. . . . . . 7
⊢
((((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd
‘𝐴))) → 𝑣 ∈ (2nd
‘𝐶)) | 
| 94 | 20, 93 | rexlimddv 2619 | 
. . . . . 6
⊢
(((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) ∧ (𝑡 ∈ Q ∧ (𝑡 +Q
𝑡) = 𝑤)) → 𝑣 ∈ (2nd ‘𝐶)) | 
| 95 | 11, 94 | rexlimddv 2619 | 
. . . . 5
⊢
((((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤 ∈ Q ∧ (𝑟 +Q
𝑤) = 𝑣)) → 𝑣 ∈ (2nd ‘𝐶)) | 
| 96 | 8, 95 | rexlimddv 2619 | 
. . . 4
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P
𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) ∧ (𝑟 ∈ (2nd ‘𝐵) ∧ 𝑟 <Q 𝑣)) → 𝑣 ∈ (2nd ‘𝐶)) | 
| 97 | 5, 96 | rexlimddv 2619 | 
. . 3
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝐴
+P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd ‘𝐵)) → 𝑣 ∈ (2nd ‘𝐶)) | 
| 98 | 97 | ex 115 | 
. 2
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝐴
+P 𝐵) = (𝐴 +P 𝐶)) → (𝑣 ∈ (2nd ‘𝐵) → 𝑣 ∈ (2nd ‘𝐶))) | 
| 99 | 98 | ssrdv 3189 | 
1
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ (𝐴
+P 𝐵) = (𝐴 +P 𝐶)) → (2nd
‘𝐵) ⊆
(2nd ‘𝐶)) |