ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanprlemu GIF version

Theorem addcanprlemu 7577
Description: Lemma for addcanprg 7578. (Contributed by Jim Kingdon, 25-Dec-2019.)
Assertion
Ref Expression
addcanprlemu (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) ⊆ (2nd𝐶))

Proof of Theorem addcanprlemu
Dummy variables 𝑓 𝑔 𝑞 𝑟 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7437 . . . . . . 7 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 prnminu 7451 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑣 ∈ (2nd𝐵)) → ∃𝑟 ∈ (2nd𝐵)𝑟 <Q 𝑣)
31, 2sylan 281 . . . . . 6 ((𝐵P𝑣 ∈ (2nd𝐵)) → ∃𝑟 ∈ (2nd𝐵)𝑟 <Q 𝑣)
433ad2antl2 1155 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ 𝑣 ∈ (2nd𝐵)) → ∃𝑟 ∈ (2nd𝐵)𝑟 <Q 𝑣)
54adantlr 474 . . . 4 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) → ∃𝑟 ∈ (2nd𝐵)𝑟 <Q 𝑣)
6 simprr 527 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → 𝑟 <Q 𝑣)
7 ltexnqi 7371 . . . . . 6 (𝑟 <Q 𝑣 → ∃𝑤Q (𝑟 +Q 𝑤) = 𝑣)
86, 7syl 14 . . . . 5 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → ∃𝑤Q (𝑟 +Q 𝑤) = 𝑣)
9 simprl 526 . . . . . . 7 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) → 𝑤Q)
10 halfnqq 7372 . . . . . . 7 (𝑤Q → ∃𝑡Q (𝑡 +Q 𝑡) = 𝑤)
119, 10syl 14 . . . . . 6 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) → ∃𝑡Q (𝑡 +Q 𝑡) = 𝑤)
12 prop 7437 . . . . . . . . . . . . . 14 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
13 prarloc2 7466 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑡Q) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1412, 13sylan 281 . . . . . . . . . . . . 13 ((𝐴P𝑡Q) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1514adantrr 476 . . . . . . . . . . . 12 ((𝐴P ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
16153ad2antl1 1154 . . . . . . . . . . 11 (((𝐴P𝐵P𝐶P) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1716adantlr 474 . . . . . . . . . 10 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1817adantlr 474 . . . . . . . . 9 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1918adantlr 474 . . . . . . . 8 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
2019adantlr 474 . . . . . . 7 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
21 simplll 528 . . . . . . . . . . . . . 14 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → (𝐴P𝐵P𝐶P))
2221ad3antrrr 489 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝐴P𝐵P𝐶P))
2322simp1d 1004 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐴P)
2422simp2d 1005 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐵P)
25 addclpr 7499 . . . . . . . . . . . 12 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
2623, 24, 25syl2anc 409 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝐴 +P 𝐵) ∈ P)
27 prop 7437 . . . . . . . . . . 11 ((𝐴 +P 𝐵) ∈ P → ⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P)
2826, 27syl 14 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P)
2923, 12syl 14 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
30 simprl 526 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑢 ∈ (1st𝐴))
31 elprnql 7443 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (1st𝐴)) → 𝑢Q)
3229, 30, 31syl2anc 409 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑢Q)
33 simplrl 530 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑡Q)
34 addclnq 7337 . . . . . . . . . . . 12 ((𝑢Q𝑡Q) → (𝑢 +Q 𝑡) ∈ Q)
3532, 33, 34syl2anc 409 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑢 +Q 𝑡) ∈ Q)
3624, 1syl 14 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
37 simprl 526 . . . . . . . . . . . . 13 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → 𝑟 ∈ (2nd𝐵))
3837ad3antrrr 489 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑟 ∈ (2nd𝐵))
39 elprnqu 7444 . . . . . . . . . . . 12 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑟 ∈ (2nd𝐵)) → 𝑟Q)
4036, 38, 39syl2anc 409 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑟Q)
41 addclnq 7337 . . . . . . . . . . 11 (((𝑢 +Q 𝑡) ∈ Q𝑟Q) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ Q)
4235, 40, 41syl2anc 409 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ Q)
43 prdisj 7454 . . . . . . . . . 10 ((⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P ∧ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ Q) → ¬ (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
4428, 42, 43syl2anc 409 . . . . . . . . 9 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ¬ (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
45 addassnqg 7344 . . . . . . . . . . . . . . 15 ((𝑢Q𝑡Q𝑟Q) → ((𝑢 +Q 𝑡) +Q 𝑟) = (𝑢 +Q (𝑡 +Q 𝑟)))
4632, 33, 40, 45syl3anc 1233 . . . . . . . . . . . . . 14 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) = (𝑢 +Q (𝑡 +Q 𝑟)))
47 addcomnqg 7343 . . . . . . . . . . . . . . . 16 ((𝑡Q𝑟Q) → (𝑡 +Q 𝑟) = (𝑟 +Q 𝑡))
4847oveq2d 5869 . . . . . . . . . . . . . . 15 ((𝑡Q𝑟Q) → (𝑢 +Q (𝑡 +Q 𝑟)) = (𝑢 +Q (𝑟 +Q 𝑡)))
4933, 40, 48syl2anc 409 . . . . . . . . . . . . . 14 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑢 +Q (𝑡 +Q 𝑟)) = (𝑢 +Q (𝑟 +Q 𝑡)))
5046, 49eqtrd 2203 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) = (𝑢 +Q (𝑟 +Q 𝑡)))
5150adantr 274 . . . . . . . . . . . 12 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 +Q 𝑡) +Q 𝑟) = (𝑢 +Q (𝑟 +Q 𝑡)))
52 simplrl 530 . . . . . . . . . . . . 13 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → 𝑢 ∈ (1st𝐴))
53 simpr 109 . . . . . . . . . . . . 13 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (𝑟 +Q 𝑡) ∈ (1st𝐶))
5423adantr 274 . . . . . . . . . . . . . 14 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → 𝐴P)
5522simp3d 1006 . . . . . . . . . . . . . . 15 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐶P)
5655adantr 274 . . . . . . . . . . . . . 14 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → 𝐶P)
57 df-iplp 7430 . . . . . . . . . . . . . . 15 +P = (𝑞P, 𝑠P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑞) ∧ ∈ (1st𝑠) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑞) ∧ ∈ (2nd𝑠) ∧ 𝑓 = (𝑔 +Q ))}⟩)
58 addclnq 7337 . . . . . . . . . . . . . . 15 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
5957, 58genpprecll 7476 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → ((𝑢 ∈ (1st𝐴) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (𝑢 +Q (𝑟 +Q 𝑡)) ∈ (1st ‘(𝐴 +P 𝐶))))
6054, 56, 59syl2anc 409 . . . . . . . . . . . . 13 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 ∈ (1st𝐴) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (𝑢 +Q (𝑟 +Q 𝑡)) ∈ (1st ‘(𝐴 +P 𝐶))))
6152, 53, 60mp2and 431 . . . . . . . . . . . 12 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (𝑢 +Q (𝑟 +Q 𝑡)) ∈ (1st ‘(𝐴 +P 𝐶)))
6251, 61eqeltrd 2247 . . . . . . . . . . 11 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐶)))
63 fveq2 5496 . . . . . . . . . . . . 13 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → (1st ‘(𝐴 +P 𝐵)) = (1st ‘(𝐴 +P 𝐶)))
6463eleq2d 2240 . . . . . . . . . . . 12 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐶))))
6564ad7antlr 498 . . . . . . . . . . 11 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐶))))
6662, 65mpbird 166 . . . . . . . . . 10 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)))
6757, 58genppreclu 7477 . . . . . . . . . . . . . . . . . . 19 ((𝐴P𝐵P) → (((𝑢 +Q 𝑡) ∈ (2nd𝐴) ∧ 𝑟 ∈ (2nd𝐵)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
6867ancomsd 267 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝐵P) → ((𝑟 ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
69683adant3 1012 . . . . . . . . . . . . . . . . 17 ((𝐴P𝐵P𝐶P) → ((𝑟 ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
7069ad2antrr 485 . . . . . . . . . . . . . . . 16 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) → ((𝑟 ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
7170imp 123 . . . . . . . . . . . . . . 15 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7271adantrlr 482 . . . . . . . . . . . . . 14 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ ((𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7372anassrs 398 . . . . . . . . . . . . 13 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7473ad2ant2rl 508 . . . . . . . . . . . 12 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7574adantlr 474 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7675adantr 274 . . . . . . . . . 10 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7766, 76jca 304 . . . . . . . . 9 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
7844, 77mtand 660 . . . . . . . 8 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ¬ (𝑟 +Q 𝑡) ∈ (1st𝐶))
79 prop 7437 . . . . . . . . . . 11 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
8055, 79syl 14 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
81 ltaddnq 7369 . . . . . . . . . . . . . 14 ((𝑡Q𝑡Q) → 𝑡 <Q (𝑡 +Q 𝑡))
8233, 33, 81syl2anc 409 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑡 <Q (𝑡 +Q 𝑡))
83 simplrr 531 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑡 +Q 𝑡) = 𝑤)
8482, 83breqtrd 4015 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑡 <Q 𝑤)
85 ltanqi 7364 . . . . . . . . . . . 12 ((𝑡 <Q 𝑤𝑟Q) → (𝑟 +Q 𝑡) <Q (𝑟 +Q 𝑤))
8684, 40, 85syl2anc 409 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑟 +Q 𝑡) <Q (𝑟 +Q 𝑤))
87 simprr 527 . . . . . . . . . . . 12 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) → (𝑟 +Q 𝑤) = 𝑣)
8887ad2antrr 485 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑟 +Q 𝑤) = 𝑣)
8986, 88breqtrd 4015 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑟 +Q 𝑡) <Q 𝑣)
90 prloc 7453 . . . . . . . . . 10 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P ∧ (𝑟 +Q 𝑡) <Q 𝑣) → ((𝑟 +Q 𝑡) ∈ (1st𝐶) ∨ 𝑣 ∈ (2nd𝐶)))
9180, 89, 90syl2anc 409 . . . . . . . . 9 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑟 +Q 𝑡) ∈ (1st𝐶) ∨ 𝑣 ∈ (2nd𝐶)))
9291orcomd 724 . . . . . . . 8 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑣 ∈ (2nd𝐶) ∨ (𝑟 +Q 𝑡) ∈ (1st𝐶)))
9378, 92ecased 1344 . . . . . . 7 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑣 ∈ (2nd𝐶))
9420, 93rexlimddv 2592 . . . . . 6 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → 𝑣 ∈ (2nd𝐶))
9511, 94rexlimddv 2592 . . . . 5 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) → 𝑣 ∈ (2nd𝐶))
968, 95rexlimddv 2592 . . . 4 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → 𝑣 ∈ (2nd𝐶))
975, 96rexlimddv 2592 . . 3 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) → 𝑣 ∈ (2nd𝐶))
9897ex 114 . 2 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (𝑣 ∈ (2nd𝐵) → 𝑣 ∈ (2nd𝐶)))
9998ssrdv 3153 1 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) ⊆ (2nd𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  wcel 2141  wrex 2449  wss 3121  cop 3586   class class class wbr 3989  cfv 5198  (class class class)co 5853  1st c1st 6117  2nd c2nd 6118  Qcnq 7242   +Q cplq 7244   <Q cltq 7247  Pcnp 7253   +P cpp 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430
This theorem is referenced by:  addcanprg  7578
  Copyright terms: Public domain W3C validator