ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanprlemu GIF version

Theorem addcanprlemu 7735
Description: Lemma for addcanprg 7736. (Contributed by Jim Kingdon, 25-Dec-2019.)
Assertion
Ref Expression
addcanprlemu (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) ⊆ (2nd𝐶))

Proof of Theorem addcanprlemu
Dummy variables 𝑓 𝑔 𝑞 𝑟 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7595 . . . . . . 7 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 prnminu 7609 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑣 ∈ (2nd𝐵)) → ∃𝑟 ∈ (2nd𝐵)𝑟 <Q 𝑣)
31, 2sylan 283 . . . . . 6 ((𝐵P𝑣 ∈ (2nd𝐵)) → ∃𝑟 ∈ (2nd𝐵)𝑟 <Q 𝑣)
433ad2antl2 1163 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ 𝑣 ∈ (2nd𝐵)) → ∃𝑟 ∈ (2nd𝐵)𝑟 <Q 𝑣)
54adantlr 477 . . . 4 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) → ∃𝑟 ∈ (2nd𝐵)𝑟 <Q 𝑣)
6 simprr 531 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → 𝑟 <Q 𝑣)
7 ltexnqi 7529 . . . . . 6 (𝑟 <Q 𝑣 → ∃𝑤Q (𝑟 +Q 𝑤) = 𝑣)
86, 7syl 14 . . . . 5 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → ∃𝑤Q (𝑟 +Q 𝑤) = 𝑣)
9 simprl 529 . . . . . . 7 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) → 𝑤Q)
10 halfnqq 7530 . . . . . . 7 (𝑤Q → ∃𝑡Q (𝑡 +Q 𝑡) = 𝑤)
119, 10syl 14 . . . . . 6 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) → ∃𝑡Q (𝑡 +Q 𝑡) = 𝑤)
12 prop 7595 . . . . . . . . . . . . . 14 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
13 prarloc2 7624 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑡Q) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1412, 13sylan 283 . . . . . . . . . . . . 13 ((𝐴P𝑡Q) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1514adantrr 479 . . . . . . . . . . . 12 ((𝐴P ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
16153ad2antl1 1162 . . . . . . . . . . 11 (((𝐴P𝐵P𝐶P) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1716adantlr 477 . . . . . . . . . 10 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1817adantlr 477 . . . . . . . . 9 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1918adantlr 477 . . . . . . . 8 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
2019adantlr 477 . . . . . . 7 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
21 simplll 533 . . . . . . . . . . . . . 14 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → (𝐴P𝐵P𝐶P))
2221ad3antrrr 492 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝐴P𝐵P𝐶P))
2322simp1d 1012 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐴P)
2422simp2d 1013 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐵P)
25 addclpr 7657 . . . . . . . . . . . 12 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
2623, 24, 25syl2anc 411 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝐴 +P 𝐵) ∈ P)
27 prop 7595 . . . . . . . . . . 11 ((𝐴 +P 𝐵) ∈ P → ⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P)
2826, 27syl 14 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P)
2923, 12syl 14 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
30 simprl 529 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑢 ∈ (1st𝐴))
31 elprnql 7601 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (1st𝐴)) → 𝑢Q)
3229, 30, 31syl2anc 411 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑢Q)
33 simplrl 535 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑡Q)
34 addclnq 7495 . . . . . . . . . . . 12 ((𝑢Q𝑡Q) → (𝑢 +Q 𝑡) ∈ Q)
3532, 33, 34syl2anc 411 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑢 +Q 𝑡) ∈ Q)
3624, 1syl 14 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
37 simprl 529 . . . . . . . . . . . . 13 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → 𝑟 ∈ (2nd𝐵))
3837ad3antrrr 492 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑟 ∈ (2nd𝐵))
39 elprnqu 7602 . . . . . . . . . . . 12 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑟 ∈ (2nd𝐵)) → 𝑟Q)
4036, 38, 39syl2anc 411 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑟Q)
41 addclnq 7495 . . . . . . . . . . 11 (((𝑢 +Q 𝑡) ∈ Q𝑟Q) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ Q)
4235, 40, 41syl2anc 411 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ Q)
43 prdisj 7612 . . . . . . . . . 10 ((⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P ∧ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ Q) → ¬ (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
4428, 42, 43syl2anc 411 . . . . . . . . 9 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ¬ (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
45 addassnqg 7502 . . . . . . . . . . . . . . 15 ((𝑢Q𝑡Q𝑟Q) → ((𝑢 +Q 𝑡) +Q 𝑟) = (𝑢 +Q (𝑡 +Q 𝑟)))
4632, 33, 40, 45syl3anc 1250 . . . . . . . . . . . . . 14 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) = (𝑢 +Q (𝑡 +Q 𝑟)))
47 addcomnqg 7501 . . . . . . . . . . . . . . . 16 ((𝑡Q𝑟Q) → (𝑡 +Q 𝑟) = (𝑟 +Q 𝑡))
4847oveq2d 5967 . . . . . . . . . . . . . . 15 ((𝑡Q𝑟Q) → (𝑢 +Q (𝑡 +Q 𝑟)) = (𝑢 +Q (𝑟 +Q 𝑡)))
4933, 40, 48syl2anc 411 . . . . . . . . . . . . . 14 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑢 +Q (𝑡 +Q 𝑟)) = (𝑢 +Q (𝑟 +Q 𝑡)))
5046, 49eqtrd 2239 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) = (𝑢 +Q (𝑟 +Q 𝑡)))
5150adantr 276 . . . . . . . . . . . 12 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 +Q 𝑡) +Q 𝑟) = (𝑢 +Q (𝑟 +Q 𝑡)))
52 simplrl 535 . . . . . . . . . . . . 13 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → 𝑢 ∈ (1st𝐴))
53 simpr 110 . . . . . . . . . . . . 13 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (𝑟 +Q 𝑡) ∈ (1st𝐶))
5423adantr 276 . . . . . . . . . . . . . 14 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → 𝐴P)
5522simp3d 1014 . . . . . . . . . . . . . . 15 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐶P)
5655adantr 276 . . . . . . . . . . . . . 14 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → 𝐶P)
57 df-iplp 7588 . . . . . . . . . . . . . . 15 +P = (𝑞P, 𝑠P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑞) ∧ ∈ (1st𝑠) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑞) ∧ ∈ (2nd𝑠) ∧ 𝑓 = (𝑔 +Q ))}⟩)
58 addclnq 7495 . . . . . . . . . . . . . . 15 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
5957, 58genpprecll 7634 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → ((𝑢 ∈ (1st𝐴) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (𝑢 +Q (𝑟 +Q 𝑡)) ∈ (1st ‘(𝐴 +P 𝐶))))
6054, 56, 59syl2anc 411 . . . . . . . . . . . . 13 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 ∈ (1st𝐴) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (𝑢 +Q (𝑟 +Q 𝑡)) ∈ (1st ‘(𝐴 +P 𝐶))))
6152, 53, 60mp2and 433 . . . . . . . . . . . 12 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (𝑢 +Q (𝑟 +Q 𝑡)) ∈ (1st ‘(𝐴 +P 𝐶)))
6251, 61eqeltrd 2283 . . . . . . . . . . 11 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐶)))
63 fveq2 5583 . . . . . . . . . . . . 13 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → (1st ‘(𝐴 +P 𝐵)) = (1st ‘(𝐴 +P 𝐶)))
6463eleq2d 2276 . . . . . . . . . . . 12 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐶))))
6564ad7antlr 501 . . . . . . . . . . 11 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐶))))
6662, 65mpbird 167 . . . . . . . . . 10 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)))
6757, 58genppreclu 7635 . . . . . . . . . . . . . . . . . . 19 ((𝐴P𝐵P) → (((𝑢 +Q 𝑡) ∈ (2nd𝐴) ∧ 𝑟 ∈ (2nd𝐵)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
6867ancomsd 269 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝐵P) → ((𝑟 ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
69683adant3 1020 . . . . . . . . . . . . . . . . 17 ((𝐴P𝐵P𝐶P) → ((𝑟 ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
7069ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) → ((𝑟 ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
7170imp 124 . . . . . . . . . . . . . . 15 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7271adantrlr 485 . . . . . . . . . . . . . 14 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ ((𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7372anassrs 400 . . . . . . . . . . . . 13 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7473ad2ant2rl 511 . . . . . . . . . . . 12 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7574adantlr 477 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7675adantr 276 . . . . . . . . . 10 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7766, 76jca 306 . . . . . . . . 9 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
7844, 77mtand 667 . . . . . . . 8 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ¬ (𝑟 +Q 𝑡) ∈ (1st𝐶))
79 prop 7595 . . . . . . . . . . 11 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
8055, 79syl 14 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
81 ltaddnq 7527 . . . . . . . . . . . . . 14 ((𝑡Q𝑡Q) → 𝑡 <Q (𝑡 +Q 𝑡))
8233, 33, 81syl2anc 411 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑡 <Q (𝑡 +Q 𝑡))
83 simplrr 536 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑡 +Q 𝑡) = 𝑤)
8482, 83breqtrd 4073 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑡 <Q 𝑤)
85 ltanqi 7522 . . . . . . . . . . . 12 ((𝑡 <Q 𝑤𝑟Q) → (𝑟 +Q 𝑡) <Q (𝑟 +Q 𝑤))
8684, 40, 85syl2anc 411 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑟 +Q 𝑡) <Q (𝑟 +Q 𝑤))
87 simprr 531 . . . . . . . . . . . 12 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) → (𝑟 +Q 𝑤) = 𝑣)
8887ad2antrr 488 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑟 +Q 𝑤) = 𝑣)
8986, 88breqtrd 4073 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑟 +Q 𝑡) <Q 𝑣)
90 prloc 7611 . . . . . . . . . 10 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P ∧ (𝑟 +Q 𝑡) <Q 𝑣) → ((𝑟 +Q 𝑡) ∈ (1st𝐶) ∨ 𝑣 ∈ (2nd𝐶)))
9180, 89, 90syl2anc 411 . . . . . . . . 9 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑟 +Q 𝑡) ∈ (1st𝐶) ∨ 𝑣 ∈ (2nd𝐶)))
9291orcomd 731 . . . . . . . 8 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑣 ∈ (2nd𝐶) ∨ (𝑟 +Q 𝑡) ∈ (1st𝐶)))
9378, 92ecased 1362 . . . . . . 7 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑣 ∈ (2nd𝐶))
9420, 93rexlimddv 2629 . . . . . 6 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → 𝑣 ∈ (2nd𝐶))
9511, 94rexlimddv 2629 . . . . 5 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) → 𝑣 ∈ (2nd𝐶))
968, 95rexlimddv 2629 . . . 4 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → 𝑣 ∈ (2nd𝐶))
975, 96rexlimddv 2629 . . 3 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) → 𝑣 ∈ (2nd𝐶))
9897ex 115 . 2 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (𝑣 ∈ (2nd𝐵) → 𝑣 ∈ (2nd𝐶)))
9998ssrdv 3200 1 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) ⊆ (2nd𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2177  wrex 2486  wss 3167  cop 3637   class class class wbr 4047  cfv 5276  (class class class)co 5951  1st c1st 6231  2nd c2nd 6232  Qcnq 7400   +Q cplq 7402   <Q cltq 7405  Pcnp 7411   +P cpp 7413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-eprel 4340  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-1o 6509  df-2o 6510  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-pli 7425  df-mi 7426  df-lti 7427  df-plpq 7464  df-mpq 7465  df-enq 7467  df-nqqs 7468  df-plqqs 7469  df-mqqs 7470  df-1nqqs 7471  df-rq 7472  df-ltnqqs 7473  df-enq0 7544  df-nq0 7545  df-0nq0 7546  df-plq0 7547  df-mq0 7548  df-inp 7586  df-iplp 7588
This theorem is referenced by:  addcanprg  7736
  Copyright terms: Public domain W3C validator