| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > adantrrl | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) | 
| Ref | Expression | 
|---|---|
| adantr2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | 
| Ref | Expression | 
|---|---|
| adantrrl | ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜏 ∧ 𝜒))) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜏 ∧ 𝜒) → 𝜒) | |
| 2 | adantr2.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylanr2 405 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜏 ∧ 𝜒))) → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem is referenced by: 1stconst 6279 ltexprlemdisj 7673 axpre-suploclemres 7968 ltmul12a 8887 neiint 14381 neissex 14401 | 
| Copyright terms: Public domain | W3C validator |