ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemdisj GIF version

Theorem ltexprlemdisj 7596
Description: Our constructed difference is disjoint. Lemma for ltexpri 7603. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemdisj (𝐴<P 𝐵 → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝐴   𝑥,𝐵,𝑦,𝑞   𝑥,𝐶,𝑦,𝑞

Proof of Theorem ltexprlemdisj
Dummy variables 𝑧 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltsonq 7388 . . . . . 6 <Q Or Q
2 ltrelnq 7355 . . . . . 6 <Q ⊆ (Q × Q)
31, 2son2lpi 5021 . . . . 5 ¬ (𝑦 <Q 𝑧𝑧 <Q 𝑦)
4 ltrelpr 7495 . . . . . . . . . . . . . . . 16 <P ⊆ (P × P)
54brel 4675 . . . . . . . . . . . . . . 15 (𝐴<P 𝐵 → (𝐴P𝐵P))
65simprd 114 . . . . . . . . . . . . . 14 (𝐴<P 𝐵𝐵P)
7 prop 7465 . . . . . . . . . . . . . 14 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
86, 7syl 14 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
9 prltlu 7477 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
108, 9syl3an1 1271 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
11103expb 1204 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
1211adantlr 477 . . . . . . . . . 10 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
1312adantrll 484 . . . . . . . . 9 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
1413adantrrl 486 . . . . . . . 8 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
15 ltanqg 7390 . . . . . . . . . 10 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
1615adantl 277 . . . . . . . . 9 ((((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
175simpld 112 . . . . . . . . . . . . 13 (𝐴<P 𝐵𝐴P)
18 prop 7465 . . . . . . . . . . . . 13 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
1917, 18syl 14 . . . . . . . . . . . 12 (𝐴<P 𝐵 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
20 elprnqu 7472 . . . . . . . . . . . 12 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2119, 20sylan 283 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2221ad2ant2r 509 . . . . . . . . . 10 (((𝐴<P 𝐵𝑞Q) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) → 𝑦Q)
2322adantrr 479 . . . . . . . . 9 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → 𝑦Q)
24 elprnql 7471 . . . . . . . . . . . 12 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴)) → 𝑧Q)
2519, 24sylan 283 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑧 ∈ (1st𝐴)) → 𝑧Q)
2625ad2ant2r 509 . . . . . . . . . 10 (((𝐴<P 𝐵𝑞Q) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) → 𝑧Q)
2726adantrl 478 . . . . . . . . 9 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → 𝑧Q)
28 simplr 528 . . . . . . . . 9 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → 𝑞Q)
29 addcomnqg 7371 . . . . . . . . . 10 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3029adantl 277 . . . . . . . . 9 ((((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3116, 23, 27, 28, 30caovord2d 6038 . . . . . . . 8 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → (𝑦 <Q 𝑧 ↔ (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞)))
3214, 31mpbird 167 . . . . . . 7 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → 𝑦 <Q 𝑧)
33 prltlu 7477 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑧 <Q 𝑦)
3419, 33syl3an1 1271 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑧 <Q 𝑦)
35343com23 1209 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (1st𝐴)) → 𝑧 <Q 𝑦)
36353expb 1204 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (1st𝐴))) → 𝑧 <Q 𝑦)
3736adantlr 477 . . . . . . . . 9 (((𝐴<P 𝐵𝑞Q) ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (1st𝐴))) → 𝑧 <Q 𝑦)
3837adantrlr 485 . . . . . . . 8 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ 𝑧 ∈ (1st𝐴))) → 𝑧 <Q 𝑦)
3938adantrrr 487 . . . . . . 7 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → 𝑧 <Q 𝑦)
4032, 39jca 306 . . . . . 6 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → (𝑦 <Q 𝑧𝑧 <Q 𝑦))
4140ex 115 . . . . 5 ((𝐴<P 𝐵𝑞Q) → (((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) → (𝑦 <Q 𝑧𝑧 <Q 𝑦)))
423, 41mtoi 664 . . . 4 ((𝐴<P 𝐵𝑞Q) → ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
4342alrimivv 1875 . . 3 ((𝐴<P 𝐵𝑞Q) → ∀𝑦𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
44 ltexprlem.1 . . . . . . . . . . . 12 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
4544ltexprlemell 7588 . . . . . . . . . . 11 (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
4644ltexprlemelu 7589 . . . . . . . . . . 11 (𝑞 ∈ (2nd𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))
4745, 46anbi12i 460 . . . . . . . . . 10 ((𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ ((𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
48 anandi 590 . . . . . . . . . 10 ((𝑞Q ∧ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ ((𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
4947, 48bitr4i 187 . . . . . . . . 9 ((𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ (𝑞Q ∧ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
5049baib 919 . . . . . . . 8 (𝑞Q → ((𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
51 eleq1 2240 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 ∈ (1st𝐴) ↔ 𝑧 ∈ (1st𝐴)))
52 oveq1 5876 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦 +Q 𝑞) = (𝑧 +Q 𝑞))
5352eleq1d 2246 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑦 +Q 𝑞) ∈ (2nd𝐵) ↔ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))
5451, 53anbi12d 473 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)) ↔ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
5554cbvexv 1918 . . . . . . . . 9 (∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)) ↔ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))
5655anbi2i 457 . . . . . . . 8 ((∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
5750, 56bitrdi 196 . . . . . . 7 (𝑞Q → ((𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))))
58 eeanv 1932 . . . . . . 7 (∃𝑦𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
5957, 58bitr4di 198 . . . . . 6 (𝑞Q → ((𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ ∃𝑦𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))))
6059notbid 667 . . . . 5 (𝑞Q → (¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ ¬ ∃𝑦𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))))
61 alnex 1499 . . . . . . 7 (∀𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) ↔ ¬ ∃𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
6261albii 1470 . . . . . 6 (∀𝑦𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) ↔ ∀𝑦 ¬ ∃𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
63 alnex 1499 . . . . . 6 (∀𝑦 ¬ ∃𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) ↔ ¬ ∃𝑦𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
6462, 63bitri 184 . . . . 5 (∀𝑦𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) ↔ ¬ ∃𝑦𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
6560, 64bitr4di 198 . . . 4 (𝑞Q → (¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ ∀𝑦𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))))
6665adantl 277 . . 3 ((𝐴<P 𝐵𝑞Q) → (¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ ∀𝑦𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))))
6743, 66mpbird 167 . 2 ((𝐴<P 𝐵𝑞Q) → ¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)))
6867ralrimiva 2550 1 (𝐴<P 𝐵 → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 978  wal 1351   = wceq 1353  wex 1492  wcel 2148  wral 2455  {crab 2459  cop 3594   class class class wbr 4000  cfv 5212  (class class class)co 5869  1st c1st 6133  2nd c2nd 6134  Qcnq 7270   +Q cplq 7272   <Q cltq 7275  Pcnp 7281  <P cltp 7285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-ltnqqs 7343  df-inp 7456  df-iltp 7460
This theorem is referenced by:  ltexprlempr  7598
  Copyright terms: Public domain W3C validator