ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemdisj GIF version

Theorem ltexprlemdisj 7568
Description: Our constructed difference is disjoint. Lemma for ltexpri 7575. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemdisj (𝐴<P 𝐵 → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝐴   𝑥,𝐵,𝑦,𝑞   𝑥,𝐶,𝑦,𝑞

Proof of Theorem ltexprlemdisj
Dummy variables 𝑧 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltsonq 7360 . . . . . 6 <Q Or Q
2 ltrelnq 7327 . . . . . 6 <Q ⊆ (Q × Q)
31, 2son2lpi 5007 . . . . 5 ¬ (𝑦 <Q 𝑧𝑧 <Q 𝑦)
4 ltrelpr 7467 . . . . . . . . . . . . . . . 16 <P ⊆ (P × P)
54brel 4663 . . . . . . . . . . . . . . 15 (𝐴<P 𝐵 → (𝐴P𝐵P))
65simprd 113 . . . . . . . . . . . . . 14 (𝐴<P 𝐵𝐵P)
7 prop 7437 . . . . . . . . . . . . . 14 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
86, 7syl 14 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
9 prltlu 7449 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
108, 9syl3an1 1266 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
11103expb 1199 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
1211adantlr 474 . . . . . . . . . 10 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
1312adantrll 481 . . . . . . . . 9 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
1413adantrrl 483 . . . . . . . 8 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
15 ltanqg 7362 . . . . . . . . . 10 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
1615adantl 275 . . . . . . . . 9 ((((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
175simpld 111 . . . . . . . . . . . . 13 (𝐴<P 𝐵𝐴P)
18 prop 7437 . . . . . . . . . . . . 13 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
1917, 18syl 14 . . . . . . . . . . . 12 (𝐴<P 𝐵 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
20 elprnqu 7444 . . . . . . . . . . . 12 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2119, 20sylan 281 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2221ad2ant2r 506 . . . . . . . . . 10 (((𝐴<P 𝐵𝑞Q) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) → 𝑦Q)
2322adantrr 476 . . . . . . . . 9 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → 𝑦Q)
24 elprnql 7443 . . . . . . . . . . . 12 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴)) → 𝑧Q)
2519, 24sylan 281 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑧 ∈ (1st𝐴)) → 𝑧Q)
2625ad2ant2r 506 . . . . . . . . . 10 (((𝐴<P 𝐵𝑞Q) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) → 𝑧Q)
2726adantrl 475 . . . . . . . . 9 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → 𝑧Q)
28 simplr 525 . . . . . . . . 9 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → 𝑞Q)
29 addcomnqg 7343 . . . . . . . . . 10 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3029adantl 275 . . . . . . . . 9 ((((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3116, 23, 27, 28, 30caovord2d 6022 . . . . . . . 8 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → (𝑦 <Q 𝑧 ↔ (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞)))
3214, 31mpbird 166 . . . . . . 7 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → 𝑦 <Q 𝑧)
33 prltlu 7449 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑧 <Q 𝑦)
3419, 33syl3an1 1266 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑧 <Q 𝑦)
35343com23 1204 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (1st𝐴)) → 𝑧 <Q 𝑦)
36353expb 1199 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (1st𝐴))) → 𝑧 <Q 𝑦)
3736adantlr 474 . . . . . . . . 9 (((𝐴<P 𝐵𝑞Q) ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (1st𝐴))) → 𝑧 <Q 𝑦)
3837adantrlr 482 . . . . . . . 8 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ 𝑧 ∈ (1st𝐴))) → 𝑧 <Q 𝑦)
3938adantrrr 484 . . . . . . 7 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → 𝑧 <Q 𝑦)
4032, 39jca 304 . . . . . 6 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → (𝑦 <Q 𝑧𝑧 <Q 𝑦))
4140ex 114 . . . . 5 ((𝐴<P 𝐵𝑞Q) → (((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) → (𝑦 <Q 𝑧𝑧 <Q 𝑦)))
423, 41mtoi 659 . . . 4 ((𝐴<P 𝐵𝑞Q) → ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
4342alrimivv 1868 . . 3 ((𝐴<P 𝐵𝑞Q) → ∀𝑦𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
44 ltexprlem.1 . . . . . . . . . . . 12 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
4544ltexprlemell 7560 . . . . . . . . . . 11 (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
4644ltexprlemelu 7561 . . . . . . . . . . 11 (𝑞 ∈ (2nd𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))
4745, 46anbi12i 457 . . . . . . . . . 10 ((𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ ((𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
48 anandi 585 . . . . . . . . . 10 ((𝑞Q ∧ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ ((𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
4947, 48bitr4i 186 . . . . . . . . 9 ((𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ (𝑞Q ∧ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
5049baib 914 . . . . . . . 8 (𝑞Q → ((𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
51 eleq1 2233 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 ∈ (1st𝐴) ↔ 𝑧 ∈ (1st𝐴)))
52 oveq1 5860 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦 +Q 𝑞) = (𝑧 +Q 𝑞))
5352eleq1d 2239 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑦 +Q 𝑞) ∈ (2nd𝐵) ↔ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))
5451, 53anbi12d 470 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)) ↔ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
5554cbvexv 1911 . . . . . . . . 9 (∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)) ↔ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))
5655anbi2i 454 . . . . . . . 8 ((∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
5750, 56bitrdi 195 . . . . . . 7 (𝑞Q → ((𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))))
58 eeanv 1925 . . . . . . 7 (∃𝑦𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
5957, 58bitr4di 197 . . . . . 6 (𝑞Q → ((𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ ∃𝑦𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))))
6059notbid 662 . . . . 5 (𝑞Q → (¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ ¬ ∃𝑦𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))))
61 alnex 1492 . . . . . . 7 (∀𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) ↔ ¬ ∃𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
6261albii 1463 . . . . . 6 (∀𝑦𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) ↔ ∀𝑦 ¬ ∃𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
63 alnex 1492 . . . . . 6 (∀𝑦 ¬ ∃𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) ↔ ¬ ∃𝑦𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
6462, 63bitri 183 . . . . 5 (∀𝑦𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) ↔ ¬ ∃𝑦𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
6560, 64bitr4di 197 . . . 4 (𝑞Q → (¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ ∀𝑦𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))))
6665adantl 275 . . 3 ((𝐴<P 𝐵𝑞Q) → (¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ ∀𝑦𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))))
6743, 66mpbird 166 . 2 ((𝐴<P 𝐵𝑞Q) → ¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)))
6867ralrimiva 2543 1 (𝐴<P 𝐵 → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 973  wal 1346   = wceq 1348  wex 1485  wcel 2141  wral 2448  {crab 2452  cop 3586   class class class wbr 3989  cfv 5198  (class class class)co 5853  1st c1st 6117  2nd c2nd 6118  Qcnq 7242   +Q cplq 7244   <Q cltq 7247  Pcnp 7253  <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-ltnqqs 7315  df-inp 7428  df-iltp 7432
This theorem is referenced by:  ltexprlempr  7570
  Copyright terms: Public domain W3C validator