ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpdisj GIF version

Theorem genpdisj 7583
Description: The lower and upper cuts produced by addition or multiplication on positive reals are disjoint. (Contributed by Jim Kingdon, 15-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpdisj.ord ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
genpdisj.com ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
Assertion
Ref Expression
genpdisj ((𝐴P𝐵P) → ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑞,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑞   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣,𝑞   𝐹,𝑞
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpdisj
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . . . 9 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
2 genpelvl.2 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpelvl 7572 . . . . . . . 8 ((𝐴P𝐵P) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑎 ∈ (1st𝐴)∃𝑏 ∈ (1st𝐵)𝑞 = (𝑎𝐺𝑏)))
4 r2ex 2514 . . . . . . . 8 (∃𝑎 ∈ (1st𝐴)∃𝑏 ∈ (1st𝐵)𝑞 = (𝑎𝐺𝑏) ↔ ∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)))
53, 4bitrdi 196 . . . . . . 7 ((𝐴P𝐵P) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏))))
61, 2genpelvu 7573 . . . . . . . 8 ((𝐴P𝐵P) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)𝑞 = (𝑐𝐺𝑑)))
7 r2ex 2514 . . . . . . . 8 (∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)𝑞 = (𝑐𝐺𝑑) ↔ ∃𝑐𝑑((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))
86, 7bitrdi 196 . . . . . . 7 ((𝐴P𝐵P) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑐𝑑((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))))
95, 8anbi12d 473 . . . . . 6 ((𝐴P𝐵P) → ((𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) ↔ (∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ∃𝑐𝑑((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))))
10 ee4anv 1950 . . . . . 6 (∃𝑎𝑏𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) ↔ (∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ∃𝑐𝑑((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))))
119, 10bitr4di 198 . . . . 5 ((𝐴P𝐵P) → ((𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) ↔ ∃𝑎𝑏𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))))
1211biimpa 296 . . . 4 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ∃𝑎𝑏𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))))
13 an4 586 . . . . . . . . . . . . 13 (((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) ∧ (𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵))) ↔ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))))
14 prop 7535 . . . . . . . . . . . . . . . 16 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
15 prltlu 7547 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) → 𝑎 <Q 𝑐)
16153expib 1208 . . . . . . . . . . . . . . . 16 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) → 𝑎 <Q 𝑐))
1714, 16syl 14 . . . . . . . . . . . . . . 15 (𝐴P → ((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) → 𝑎 <Q 𝑐))
18 prop 7535 . . . . . . . . . . . . . . . 16 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
19 prltlu 7547 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵)) → 𝑏 <Q 𝑑)
20193expib 1208 . . . . . . . . . . . . . . . 16 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ((𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵)) → 𝑏 <Q 𝑑))
2118, 20syl 14 . . . . . . . . . . . . . . 15 (𝐵P → ((𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵)) → 𝑏 <Q 𝑑))
2217, 21im2anan9 598 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) ∧ (𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑎 <Q 𝑐𝑏 <Q 𝑑)))
23 genpdisj.ord . . . . . . . . . . . . . . 15 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
24 genpdisj.com . . . . . . . . . . . . . . 15 ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
2523, 24genplt2i 7570 . . . . . . . . . . . . . 14 ((𝑎 <Q 𝑐𝑏 <Q 𝑑) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
2622, 25syl6 33 . . . . . . . . . . . . 13 ((𝐴P𝐵P) → (((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) ∧ (𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)))
2713, 26biimtrrid 153 . . . . . . . . . . . 12 ((𝐴P𝐵P) → (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)))
2827imp 124 . . . . . . . . . . 11 (((𝐴P𝐵P) ∧ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
2928adantlr 477 . . . . . . . . . 10 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
3029adantrlr 485 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
3130adantrrr 487 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
32 eqtr2 2212 . . . . . . . . . . 11 ((𝑞 = (𝑎𝐺𝑏) ∧ 𝑞 = (𝑐𝐺𝑑)) → (𝑎𝐺𝑏) = (𝑐𝐺𝑑))
3332ad2ant2l 508 . . . . . . . . . 10 ((((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) → (𝑎𝐺𝑏) = (𝑐𝐺𝑑))
3433adantl 277 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))) → (𝑎𝐺𝑏) = (𝑐𝐺𝑑))
35 ltsonq 7458 . . . . . . . . . . 11 <Q Or Q
36 ltrelnq 7425 . . . . . . . . . . 11 <Q ⊆ (Q × Q)
3735, 36soirri 5060 . . . . . . . . . 10 ¬ (𝑎𝐺𝑏) <Q (𝑎𝐺𝑏)
38 breq2 4033 . . . . . . . . . 10 ((𝑎𝐺𝑏) = (𝑐𝐺𝑑) → ((𝑎𝐺𝑏) <Q (𝑎𝐺𝑏) ↔ (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)))
3937, 38mtbii 675 . . . . . . . . 9 ((𝑎𝐺𝑏) = (𝑐𝐺𝑑) → ¬ (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
4034, 39syl 14 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))) → ¬ (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
4131, 40pm2.21fal 1384 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))) → ⊥)
4241ex 115 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ((((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) → ⊥))
4342exlimdvv 1909 . . . . 5 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → (∃𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) → ⊥))
4443exlimdvv 1909 . . . 4 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → (∃𝑎𝑏𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) → ⊥))
4512, 44mpd 13 . . 3 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ⊥)
4645inegd 1383 . 2 ((𝐴P𝐵P) → ¬ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
4746ralrimivw 2568 1 ((𝐴P𝐵P) → ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wfal 1369  wex 1503  wcel 2164  wral 2472  wrex 2473  {crab 2476  cop 3621   class class class wbr 4029  cfv 5254  (class class class)co 5918  cmpo 5920  1st c1st 6191  2nd c2nd 6192  Qcnq 7340   <Q cltq 7345  Pcnp 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-mi 7366  df-lti 7367  df-enq 7407  df-nqqs 7408  df-ltnqqs 7413  df-inp 7526
This theorem is referenced by:  addclpr  7597  mulclpr  7632
  Copyright terms: Public domain W3C validator