ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpdisj GIF version

Theorem genpdisj 7485
Description: The lower and upper cuts produced by addition or multiplication on positive reals are disjoint. (Contributed by Jim Kingdon, 15-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpdisj.ord ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
genpdisj.com ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
Assertion
Ref Expression
genpdisj ((𝐴P𝐵P) → ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑞,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑞   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣,𝑞   𝐹,𝑞
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpdisj
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . . . 9 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
2 genpelvl.2 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpelvl 7474 . . . . . . . 8 ((𝐴P𝐵P) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑎 ∈ (1st𝐴)∃𝑏 ∈ (1st𝐵)𝑞 = (𝑎𝐺𝑏)))
4 r2ex 2490 . . . . . . . 8 (∃𝑎 ∈ (1st𝐴)∃𝑏 ∈ (1st𝐵)𝑞 = (𝑎𝐺𝑏) ↔ ∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)))
53, 4bitrdi 195 . . . . . . 7 ((𝐴P𝐵P) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏))))
61, 2genpelvu 7475 . . . . . . . 8 ((𝐴P𝐵P) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)𝑞 = (𝑐𝐺𝑑)))
7 r2ex 2490 . . . . . . . 8 (∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)𝑞 = (𝑐𝐺𝑑) ↔ ∃𝑐𝑑((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))
86, 7bitrdi 195 . . . . . . 7 ((𝐴P𝐵P) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑐𝑑((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))))
95, 8anbi12d 470 . . . . . 6 ((𝐴P𝐵P) → ((𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) ↔ (∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ∃𝑐𝑑((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))))
10 ee4anv 1927 . . . . . 6 (∃𝑎𝑏𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) ↔ (∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ∃𝑐𝑑((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))))
119, 10bitr4di 197 . . . . 5 ((𝐴P𝐵P) → ((𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) ↔ ∃𝑎𝑏𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))))
1211biimpa 294 . . . 4 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ∃𝑎𝑏𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))))
13 an4 581 . . . . . . . . . . . . 13 (((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) ∧ (𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵))) ↔ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))))
14 prop 7437 . . . . . . . . . . . . . . . 16 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
15 prltlu 7449 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) → 𝑎 <Q 𝑐)
16153expib 1201 . . . . . . . . . . . . . . . 16 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) → 𝑎 <Q 𝑐))
1714, 16syl 14 . . . . . . . . . . . . . . 15 (𝐴P → ((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) → 𝑎 <Q 𝑐))
18 prop 7437 . . . . . . . . . . . . . . . 16 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
19 prltlu 7449 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵)) → 𝑏 <Q 𝑑)
20193expib 1201 . . . . . . . . . . . . . . . 16 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ((𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵)) → 𝑏 <Q 𝑑))
2118, 20syl 14 . . . . . . . . . . . . . . 15 (𝐵P → ((𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵)) → 𝑏 <Q 𝑑))
2217, 21im2anan9 593 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) ∧ (𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑎 <Q 𝑐𝑏 <Q 𝑑)))
23 genpdisj.ord . . . . . . . . . . . . . . 15 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
24 genpdisj.com . . . . . . . . . . . . . . 15 ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
2523, 24genplt2i 7472 . . . . . . . . . . . . . 14 ((𝑎 <Q 𝑐𝑏 <Q 𝑑) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
2622, 25syl6 33 . . . . . . . . . . . . 13 ((𝐴P𝐵P) → (((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) ∧ (𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)))
2713, 26syl5bir 152 . . . . . . . . . . . 12 ((𝐴P𝐵P) → (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)))
2827imp 123 . . . . . . . . . . 11 (((𝐴P𝐵P) ∧ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
2928adantlr 474 . . . . . . . . . 10 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
3029adantrlr 482 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
3130adantrrr 484 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
32 eqtr2 2189 . . . . . . . . . . 11 ((𝑞 = (𝑎𝐺𝑏) ∧ 𝑞 = (𝑐𝐺𝑑)) → (𝑎𝐺𝑏) = (𝑐𝐺𝑑))
3332ad2ant2l 505 . . . . . . . . . 10 ((((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) → (𝑎𝐺𝑏) = (𝑐𝐺𝑑))
3433adantl 275 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))) → (𝑎𝐺𝑏) = (𝑐𝐺𝑑))
35 ltsonq 7360 . . . . . . . . . . 11 <Q Or Q
36 ltrelnq 7327 . . . . . . . . . . 11 <Q ⊆ (Q × Q)
3735, 36soirri 5005 . . . . . . . . . 10 ¬ (𝑎𝐺𝑏) <Q (𝑎𝐺𝑏)
38 breq2 3993 . . . . . . . . . 10 ((𝑎𝐺𝑏) = (𝑐𝐺𝑑) → ((𝑎𝐺𝑏) <Q (𝑎𝐺𝑏) ↔ (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)))
3937, 38mtbii 669 . . . . . . . . 9 ((𝑎𝐺𝑏) = (𝑐𝐺𝑑) → ¬ (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
4034, 39syl 14 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))) → ¬ (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
4131, 40pm2.21fal 1368 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))) → ⊥)
4241ex 114 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ((((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) → ⊥))
4342exlimdvv 1890 . . . . 5 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → (∃𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) → ⊥))
4443exlimdvv 1890 . . . 4 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → (∃𝑎𝑏𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) → ⊥))
4512, 44mpd 13 . . 3 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ⊥)
4645inegd 1367 . 2 ((𝐴P𝐵P) → ¬ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
4746ralrimivw 2544 1 ((𝐴P𝐵P) → ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wfal 1353  wex 1485  wcel 2141  wral 2448  wrex 2449  {crab 2452  cop 3586   class class class wbr 3989  cfv 5198  (class class class)co 5853  cmpo 5855  1st c1st 6117  2nd c2nd 6118  Qcnq 7242   <Q cltq 7247  Pcnp 7253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-mi 7268  df-lti 7269  df-enq 7309  df-nqqs 7310  df-ltnqqs 7315  df-inp 7428
This theorem is referenced by:  addclpr  7499  mulclpr  7534
  Copyright terms: Public domain W3C validator