ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpdisj GIF version

Theorem genpdisj 7464
Description: The lower and upper cuts produced by addition or multiplication on positive reals are disjoint. (Contributed by Jim Kingdon, 15-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpdisj.ord ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
genpdisj.com ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
Assertion
Ref Expression
genpdisj ((𝐴P𝐵P) → ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑞,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑞   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣,𝑞   𝐹,𝑞
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpdisj
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . . . 9 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
2 genpelvl.2 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpelvl 7453 . . . . . . . 8 ((𝐴P𝐵P) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑎 ∈ (1st𝐴)∃𝑏 ∈ (1st𝐵)𝑞 = (𝑎𝐺𝑏)))
4 r2ex 2486 . . . . . . . 8 (∃𝑎 ∈ (1st𝐴)∃𝑏 ∈ (1st𝐵)𝑞 = (𝑎𝐺𝑏) ↔ ∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)))
53, 4bitrdi 195 . . . . . . 7 ((𝐴P𝐵P) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏))))
61, 2genpelvu 7454 . . . . . . . 8 ((𝐴P𝐵P) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)𝑞 = (𝑐𝐺𝑑)))
7 r2ex 2486 . . . . . . . 8 (∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)𝑞 = (𝑐𝐺𝑑) ↔ ∃𝑐𝑑((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))
86, 7bitrdi 195 . . . . . . 7 ((𝐴P𝐵P) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑐𝑑((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))))
95, 8anbi12d 465 . . . . . 6 ((𝐴P𝐵P) → ((𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) ↔ (∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ∃𝑐𝑑((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))))
10 ee4anv 1922 . . . . . 6 (∃𝑎𝑏𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) ↔ (∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ∃𝑐𝑑((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))))
119, 10bitr4di 197 . . . . 5 ((𝐴P𝐵P) → ((𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) ↔ ∃𝑎𝑏𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))))
1211biimpa 294 . . . 4 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ∃𝑎𝑏𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))))
13 an4 576 . . . . . . . . . . . . 13 (((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) ∧ (𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵))) ↔ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))))
14 prop 7416 . . . . . . . . . . . . . . . 16 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
15 prltlu 7428 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) → 𝑎 <Q 𝑐)
16153expib 1196 . . . . . . . . . . . . . . . 16 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) → 𝑎 <Q 𝑐))
1714, 16syl 14 . . . . . . . . . . . . . . 15 (𝐴P → ((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) → 𝑎 <Q 𝑐))
18 prop 7416 . . . . . . . . . . . . . . . 16 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
19 prltlu 7428 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵)) → 𝑏 <Q 𝑑)
20193expib 1196 . . . . . . . . . . . . . . . 16 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ((𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵)) → 𝑏 <Q 𝑑))
2118, 20syl 14 . . . . . . . . . . . . . . 15 (𝐵P → ((𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵)) → 𝑏 <Q 𝑑))
2217, 21im2anan9 588 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) ∧ (𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑎 <Q 𝑐𝑏 <Q 𝑑)))
23 genpdisj.ord . . . . . . . . . . . . . . 15 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
24 genpdisj.com . . . . . . . . . . . . . . 15 ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
2523, 24genplt2i 7451 . . . . . . . . . . . . . 14 ((𝑎 <Q 𝑐𝑏 <Q 𝑑) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
2622, 25syl6 33 . . . . . . . . . . . . 13 ((𝐴P𝐵P) → (((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) ∧ (𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)))
2713, 26syl5bir 152 . . . . . . . . . . . 12 ((𝐴P𝐵P) → (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)))
2827imp 123 . . . . . . . . . . 11 (((𝐴P𝐵P) ∧ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
2928adantlr 469 . . . . . . . . . 10 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
3029adantrlr 477 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
3130adantrrr 479 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
32 eqtr2 2184 . . . . . . . . . . 11 ((𝑞 = (𝑎𝐺𝑏) ∧ 𝑞 = (𝑐𝐺𝑑)) → (𝑎𝐺𝑏) = (𝑐𝐺𝑑))
3332ad2ant2l 500 . . . . . . . . . 10 ((((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) → (𝑎𝐺𝑏) = (𝑐𝐺𝑑))
3433adantl 275 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))) → (𝑎𝐺𝑏) = (𝑐𝐺𝑑))
35 ltsonq 7339 . . . . . . . . . . 11 <Q Or Q
36 ltrelnq 7306 . . . . . . . . . . 11 <Q ⊆ (Q × Q)
3735, 36soirri 4998 . . . . . . . . . 10 ¬ (𝑎𝐺𝑏) <Q (𝑎𝐺𝑏)
38 breq2 3986 . . . . . . . . . 10 ((𝑎𝐺𝑏) = (𝑐𝐺𝑑) → ((𝑎𝐺𝑏) <Q (𝑎𝐺𝑏) ↔ (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)))
3937, 38mtbii 664 . . . . . . . . 9 ((𝑎𝐺𝑏) = (𝑐𝐺𝑑) → ¬ (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
4034, 39syl 14 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))) → ¬ (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
4131, 40pm2.21fal 1363 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))) → ⊥)
4241ex 114 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ((((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) → ⊥))
4342exlimdvv 1885 . . . . 5 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → (∃𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) → ⊥))
4443exlimdvv 1885 . . . 4 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → (∃𝑎𝑏𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) → ⊥))
4512, 44mpd 13 . . 3 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ⊥)
4645inegd 1362 . 2 ((𝐴P𝐵P) → ¬ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
4746ralrimivw 2540 1 ((𝐴P𝐵P) → ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wfal 1348  wex 1480  wcel 2136  wral 2444  wrex 2445  {crab 2448  cop 3579   class class class wbr 3982  cfv 5188  (class class class)co 5842  cmpo 5844  1st c1st 6106  2nd c2nd 6107  Qcnq 7221   <Q cltq 7226  Pcnp 7232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-mi 7247  df-lti 7248  df-enq 7288  df-nqqs 7289  df-ltnqqs 7294  df-inp 7407
This theorem is referenced by:  addclpr  7478  mulclpr  7513
  Copyright terms: Public domain W3C validator