ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpdisj GIF version

Theorem genpdisj 7455
Description: The lower and upper cuts produced by addition or multiplication on positive reals are disjoint. (Contributed by Jim Kingdon, 15-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpdisj.ord ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
genpdisj.com ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
Assertion
Ref Expression
genpdisj ((𝐴P𝐵P) → ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑞,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑞   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣,𝑞   𝐹,𝑞
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpdisj
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . . . 9 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
2 genpelvl.2 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpelvl 7444 . . . . . . . 8 ((𝐴P𝐵P) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑎 ∈ (1st𝐴)∃𝑏 ∈ (1st𝐵)𝑞 = (𝑎𝐺𝑏)))
4 r2ex 2484 . . . . . . . 8 (∃𝑎 ∈ (1st𝐴)∃𝑏 ∈ (1st𝐵)𝑞 = (𝑎𝐺𝑏) ↔ ∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)))
53, 4bitrdi 195 . . . . . . 7 ((𝐴P𝐵P) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏))))
61, 2genpelvu 7445 . . . . . . . 8 ((𝐴P𝐵P) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)𝑞 = (𝑐𝐺𝑑)))
7 r2ex 2484 . . . . . . . 8 (∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)𝑞 = (𝑐𝐺𝑑) ↔ ∃𝑐𝑑((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))
86, 7bitrdi 195 . . . . . . 7 ((𝐴P𝐵P) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑐𝑑((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))))
95, 8anbi12d 465 . . . . . 6 ((𝐴P𝐵P) → ((𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) ↔ (∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ∃𝑐𝑑((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))))
10 ee4anv 1921 . . . . . 6 (∃𝑎𝑏𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) ↔ (∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ∃𝑐𝑑((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))))
119, 10bitr4di 197 . . . . 5 ((𝐴P𝐵P) → ((𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) ↔ ∃𝑎𝑏𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))))
1211biimpa 294 . . . 4 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ∃𝑎𝑏𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))))
13 an4 576 . . . . . . . . . . . . 13 (((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) ∧ (𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵))) ↔ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))))
14 prop 7407 . . . . . . . . . . . . . . . 16 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
15 prltlu 7419 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) → 𝑎 <Q 𝑐)
16153expib 1195 . . . . . . . . . . . . . . . 16 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) → 𝑎 <Q 𝑐))
1714, 16syl 14 . . . . . . . . . . . . . . 15 (𝐴P → ((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) → 𝑎 <Q 𝑐))
18 prop 7407 . . . . . . . . . . . . . . . 16 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
19 prltlu 7419 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵)) → 𝑏 <Q 𝑑)
20193expib 1195 . . . . . . . . . . . . . . . 16 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ((𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵)) → 𝑏 <Q 𝑑))
2118, 20syl 14 . . . . . . . . . . . . . . 15 (𝐵P → ((𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵)) → 𝑏 <Q 𝑑))
2217, 21im2anan9 588 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) ∧ (𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑎 <Q 𝑐𝑏 <Q 𝑑)))
23 genpdisj.ord . . . . . . . . . . . . . . 15 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
24 genpdisj.com . . . . . . . . . . . . . . 15 ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
2523, 24genplt2i 7442 . . . . . . . . . . . . . 14 ((𝑎 <Q 𝑐𝑏 <Q 𝑑) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
2622, 25syl6 33 . . . . . . . . . . . . 13 ((𝐴P𝐵P) → (((𝑎 ∈ (1st𝐴) ∧ 𝑐 ∈ (2nd𝐴)) ∧ (𝑏 ∈ (1st𝐵) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)))
2713, 26syl5bir 152 . . . . . . . . . . . 12 ((𝐴P𝐵P) → (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)))
2827imp 123 . . . . . . . . . . 11 (((𝐴P𝐵P) ∧ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
2928adantlr 469 . . . . . . . . . 10 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
3029adantrlr 477 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
3130adantrrr 479 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
32 eqtr2 2183 . . . . . . . . . . 11 ((𝑞 = (𝑎𝐺𝑏) ∧ 𝑞 = (𝑐𝐺𝑑)) → (𝑎𝐺𝑏) = (𝑐𝐺𝑑))
3332ad2ant2l 500 . . . . . . . . . 10 ((((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) → (𝑎𝐺𝑏) = (𝑐𝐺𝑑))
3433adantl 275 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))) → (𝑎𝐺𝑏) = (𝑐𝐺𝑑))
35 ltsonq 7330 . . . . . . . . . . 11 <Q Or Q
36 ltrelnq 7297 . . . . . . . . . . 11 <Q ⊆ (Q × Q)
3735, 36soirri 4992 . . . . . . . . . 10 ¬ (𝑎𝐺𝑏) <Q (𝑎𝐺𝑏)
38 breq2 3980 . . . . . . . . . 10 ((𝑎𝐺𝑏) = (𝑐𝐺𝑑) → ((𝑎𝐺𝑏) <Q (𝑎𝐺𝑏) ↔ (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)))
3937, 38mtbii 664 . . . . . . . . 9 ((𝑎𝐺𝑏) = (𝑐𝐺𝑑) → ¬ (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
4034, 39syl 14 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))) → ¬ (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
4131, 40pm2.21fal 1362 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) ∧ (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑)))) → ⊥)
4241ex 114 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ((((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) → ⊥))
4342exlimdvv 1884 . . . . 5 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → (∃𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) → ⊥))
4443exlimdvv 1884 . . . 4 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → (∃𝑎𝑏𝑐𝑑(((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) ∧ ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) ∧ 𝑞 = (𝑐𝐺𝑑))) → ⊥))
4512, 44mpd 13 . . 3 (((𝐴P𝐵P) ∧ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ⊥)
4645inegd 1361 . 2 ((𝐴P𝐵P) → ¬ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
4746ralrimivw 2538 1 ((𝐴P𝐵P) → ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 967   = wceq 1342  wfal 1347  wex 1479  wcel 2135  wral 2442  wrex 2443  {crab 2446  cop 3573   class class class wbr 3976  cfv 5182  (class class class)co 5836  cmpo 5838  1st c1st 6098  2nd c2nd 6099  Qcnq 7212   <Q cltq 7217  Pcnp 7223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-eprel 4261  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-mi 7238  df-lti 7239  df-enq 7279  df-nqqs 7280  df-ltnqqs 7285  df-inp 7398
This theorem is referenced by:  addclpr  7469  mulclpr  7504
  Copyright terms: Public domain W3C validator