ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addsrmo GIF version

Theorem addsrmo 7558
Description: There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
Assertion
Ref Expression
addsrmo ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
Distinct variable groups:   𝑡,𝐴,𝑢,𝑣,𝑤,𝑧   𝑡,𝐵,𝑢,𝑣,𝑤,𝑧

Proof of Theorem addsrmo
Dummy variables 𝑓 𝑔 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrer 7550 . . . . . . . . . . . . . . . 16 ~R Er (P × P)
21a1i 9 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ~R Er (P × P))
3 prsrlem1 7557 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))))
4 addcmpblnr 7554 . . . . . . . . . . . . . . . . 17 ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) → (((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔)) → ⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩ ~R ⟨(𝑠 +P 𝑔), (𝑓 +P )⟩))
54imp 123 . . . . . . . . . . . . . . . 16 (((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))) → ⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩ ~R ⟨(𝑠 +P 𝑔), (𝑓 +P )⟩)
63, 5syl 14 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩ ~R ⟨(𝑠 +P 𝑔), (𝑓 +P )⟩)
72, 6erthi 6475 . . . . . . . . . . . . . 14 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )
87adantrlr 476 . . . . . . . . . . . . 13 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )
98adantrrr 478 . . . . . . . . . . . 12 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))) → [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )
10 simprlr 527 . . . . . . . . . . . 12 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))) → 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )
11 simprrr 529 . . . . . . . . . . . 12 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))) → 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )
129, 10, 113eqtr4d 2182 . . . . . . . . . . 11 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))) → 𝑧 = 𝑞)
1312expr 372 . . . . . . . . . 10 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → (((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞))
1413exlimdvv 1869 . . . . . . . . 9 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → (∃𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞))
1514exlimdvv 1869 . . . . . . . 8 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞))
1615ex 114 . . . . . . 7 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞)))
1716exlimdvv 1869 . . . . . 6 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → (∃𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞)))
1817exlimdvv 1869 . . . . 5 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞)))
1918impd 252 . . . 4 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )) → 𝑧 = 𝑞))
2019alrimivv 1847 . . 3 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )) → 𝑧 = 𝑞))
21 opeq12 3707 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → ⟨𝑤, 𝑣⟩ = ⟨𝑠, 𝑓⟩)
2221eceq1d 6465 . . . . . . . . . 10 ((𝑤 = 𝑠𝑣 = 𝑓) → [⟨𝑤, 𝑣⟩] ~R = [⟨𝑠, 𝑓⟩] ~R )
2322eqeq2d 2151 . . . . . . . . 9 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐴 = [⟨𝑠, 𝑓⟩] ~R ))
2423anbi1d 460 . . . . . . . 8 ((𝑤 = 𝑠𝑣 = 𝑓) → ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ↔ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R )))
25 simpl 108 . . . . . . . . . . . 12 ((𝑤 = 𝑠𝑣 = 𝑓) → 𝑤 = 𝑠)
2625oveq1d 5789 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑤 +P 𝑢) = (𝑠 +P 𝑢))
27 simpr 109 . . . . . . . . . . . 12 ((𝑤 = 𝑠𝑣 = 𝑓) → 𝑣 = 𝑓)
2827oveq1d 5789 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑣 +P 𝑡) = (𝑓 +P 𝑡))
2926, 28opeq12d 3713 . . . . . . . . . 10 ((𝑤 = 𝑠𝑣 = 𝑓) → ⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩ = ⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩)
3029eceq1d 6465 . . . . . . . . 9 ((𝑤 = 𝑠𝑣 = 𝑓) → [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R = [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R )
3130eqeq2d 2151 . . . . . . . 8 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R𝑞 = [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R ))
3224, 31anbi12d 464 . . . . . . 7 ((𝑤 = 𝑠𝑣 = 𝑓) → (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R )))
33 opeq12 3707 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → ⟨𝑢, 𝑡⟩ = ⟨𝑔, ⟩)
3433eceq1d 6465 . . . . . . . . . 10 ((𝑢 = 𝑔𝑡 = ) → [⟨𝑢, 𝑡⟩] ~R = [⟨𝑔, ⟩] ~R )
3534eqeq2d 2151 . . . . . . . . 9 ((𝑢 = 𝑔𝑡 = ) → (𝐵 = [⟨𝑢, 𝑡⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))
3635anbi2d 459 . . . . . . . 8 ((𝑢 = 𝑔𝑡 = ) → ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ↔ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R )))
37 simpl 108 . . . . . . . . . . . 12 ((𝑢 = 𝑔𝑡 = ) → 𝑢 = 𝑔)
3837oveq2d 5790 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → (𝑠 +P 𝑢) = (𝑠 +P 𝑔))
39 simpr 109 . . . . . . . . . . . 12 ((𝑢 = 𝑔𝑡 = ) → 𝑡 = )
4039oveq2d 5790 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → (𝑓 +P 𝑡) = (𝑓 +P ))
4138, 40opeq12d 3713 . . . . . . . . . 10 ((𝑢 = 𝑔𝑡 = ) → ⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩ = ⟨(𝑠 +P 𝑔), (𝑓 +P )⟩)
4241eceq1d 6465 . . . . . . . . 9 ((𝑢 = 𝑔𝑡 = ) → [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )
4342eqeq2d 2151 . . . . . . . 8 ((𝑢 = 𝑔𝑡 = ) → (𝑞 = [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))
4436, 43anbi12d 464 . . . . . . 7 ((𝑢 = 𝑔𝑡 = ) → (((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R ) ↔ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )))
4532, 44cbvex4v 1902 . . . . . 6 (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))
4645anbi2i 452 . . . . 5 ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) ↔ (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )))
4746imbi1i 237 . . . 4 (((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → 𝑧 = 𝑞) ↔ ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )) → 𝑧 = 𝑞))
48472albii 1447 . . 3 (∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → 𝑧 = 𝑞) ↔ ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )) → 𝑧 = 𝑞))
4920, 48sylibr 133 . 2 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → 𝑧 = 𝑞))
50 eqeq1 2146 . . . . 5 (𝑧 = 𝑞 → (𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
5150anbi2d 459 . . . 4 (𝑧 = 𝑞 → (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
52514exbidv 1842 . . 3 (𝑧 = 𝑞 → (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
5352mo4 2060 . 2 (∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → 𝑧 = 𝑞))
5449, 53sylibr 133 1 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1329   = wceq 1331  wex 1468  wcel 1480  ∃*wmo 2000  cop 3530   class class class wbr 3929   × cxp 4537  (class class class)co 5774   Er wer 6426  [cec 6427   / cqs 6428  Pcnp 7106   +P cpp 7108   ~R cer 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7119  df-pli 7120  df-mi 7121  df-lti 7122  df-plpq 7159  df-mpq 7160  df-enq 7162  df-nqqs 7163  df-plqqs 7164  df-mqqs 7165  df-1nqqs 7166  df-rq 7167  df-ltnqqs 7168  df-enq0 7239  df-nq0 7240  df-0nq0 7241  df-plq0 7242  df-mq0 7243  df-inp 7281  df-iplp 7283  df-enr 7541
This theorem is referenced by:  addsrpr  7560
  Copyright terms: Public domain W3C validator