ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmul12a GIF version

Theorem ltmul12a 8887
Description: Comparison of product of two positive numbers. (Contributed by NM, 30-Dec-2005.)
Assertion
Ref Expression
ltmul12a ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))

Proof of Theorem ltmul12a
StepHypRef Expression
1 simplll 533 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → 𝐴 ∈ ℝ)
2 simpllr 534 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → 𝐵 ∈ ℝ)
3 simpll 527 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷)) → 𝐶 ∈ ℝ)
4 simprl 529 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷)) → 0 ≤ 𝐶)
53, 4jca 306 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷)) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
65ad2ant2l 508 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
7 ltle 8114 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
87imp 124 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
98adantrl 478 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐴𝐵)
109ad2ant2r 509 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → 𝐴𝐵)
11 lemul1a 8885 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
121, 2, 6, 10, 11syl31anc 1252 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
13 simplrl 535 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐶 ∈ ℝ)
14 simplrr 536 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐷 ∈ ℝ)
15 simpllr 534 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐵 ∈ ℝ)
16 0re 8026 . . . . . . . . . 10 0 ∈ ℝ
17 lelttr 8115 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐴 < 𝐵) → 0 < 𝐵))
1816, 17mp3an1 1335 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐴 < 𝐵) → 0 < 𝐵))
1918imp 124 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 0 < 𝐵)
2019adantlr 477 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 0 < 𝐵)
21 ltmul2 8883 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 < 𝐷 ↔ (𝐵 · 𝐶) < (𝐵 · 𝐷)))
2213, 14, 15, 20, 21syl112anc 1253 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐶 < 𝐷 ↔ (𝐵 · 𝐶) < (𝐵 · 𝐷)))
2322biimpa 296 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ 𝐶 < 𝐷) → (𝐵 · 𝐶) < (𝐵 · 𝐷))
2423anasss 399 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ 𝐶 < 𝐷)) → (𝐵 · 𝐶) < (𝐵 · 𝐷))
2524adantrrl 486 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐵 · 𝐶) < (𝐵 · 𝐷))
26 remulcl 8007 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
2726ad2ant2r 509 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · 𝐶) ∈ ℝ)
28 remulcl 8007 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ)
2928ad2ant2lr 510 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 · 𝐶) ∈ ℝ)
30 remulcl 8007 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 · 𝐷) ∈ ℝ)
3130ad2ant2l 508 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 · 𝐷) ∈ ℝ)
32 lelttr 8115 . . . . 5 (((𝐴 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐷) ∈ ℝ) → (((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ∧ (𝐵 · 𝐶) < (𝐵 · 𝐷)) → (𝐴 · 𝐶) < (𝐵 · 𝐷)))
3327, 29, 31, 32syl3anc 1249 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ∧ (𝐵 · 𝐶) < (𝐵 · 𝐷)) → (𝐴 · 𝐶) < (𝐵 · 𝐷)))
3433adantr 276 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ∧ (𝐵 · 𝐶) < (𝐵 · 𝐷)) → (𝐴 · 𝐶) < (𝐵 · 𝐷)))
3512, 25, 34mp2and 433 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))
3635an4s 588 1 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2167   class class class wbr 4033  (class class class)co 5922  cr 7878  0cc0 7879   · cmul 7884   < clt 8061  cle 8062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609
This theorem is referenced by:  ltmul12ad  8968
  Copyright terms: Public domain W3C validator