| Step | Hyp | Ref
| Expression |
| 1 | | neifval.1 |
. . . . 5
⊢ 𝑋 = ∪
𝐽 |
| 2 | 1 | isnei 14660 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁)))) |
| 3 | 2 | 3adant3 1020 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁)))) |
| 4 | 3 | 3anibar 1168 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁))) |
| 5 | | simprrl 539 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ (𝑣 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁))) → 𝑆 ⊆ 𝑣) |
| 6 | 1 | ssntr 14638 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑁 ⊆ 𝑋) ∧ (𝑣 ∈ 𝐽 ∧ 𝑣 ⊆ 𝑁)) → 𝑣 ⊆ ((int‘𝐽)‘𝑁)) |
| 7 | 6 | 3adantl2 1157 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ (𝑣 ∈ 𝐽 ∧ 𝑣 ⊆ 𝑁)) → 𝑣 ⊆ ((int‘𝐽)‘𝑁)) |
| 8 | 7 | adantrrl 486 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ (𝑣 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁))) → 𝑣 ⊆ ((int‘𝐽)‘𝑁)) |
| 9 | 5, 8 | sstrd 3204 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ (𝑣 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁))) → 𝑆 ⊆ ((int‘𝐽)‘𝑁)) |
| 10 | 9 | rexlimdvaa 2625 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁) → 𝑆 ⊆ ((int‘𝐽)‘𝑁))) |
| 11 | | simpl1 1003 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝐽 ∈ Top) |
| 12 | | simpl3 1005 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝑁 ⊆ 𝑋) |
| 13 | 1 | ntropn 14633 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑁 ⊆ 𝑋) → ((int‘𝐽)‘𝑁) ∈ 𝐽) |
| 14 | 11, 12, 13 | syl2anc 411 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ((int‘𝐽)‘𝑁) ∈ 𝐽) |
| 15 | | simpr 110 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝑆 ⊆ ((int‘𝐽)‘𝑁)) |
| 16 | 1 | ntrss2 14637 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑁 ⊆ 𝑋) → ((int‘𝐽)‘𝑁) ⊆ 𝑁) |
| 17 | 11, 12, 16 | syl2anc 411 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ((int‘𝐽)‘𝑁) ⊆ 𝑁) |
| 18 | | sseq2 3218 |
. . . . . . 7
⊢ (𝑣 = ((int‘𝐽)‘𝑁) → (𝑆 ⊆ 𝑣 ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁))) |
| 19 | | sseq1 3217 |
. . . . . . 7
⊢ (𝑣 = ((int‘𝐽)‘𝑁) → (𝑣 ⊆ 𝑁 ↔ ((int‘𝐽)‘𝑁) ⊆ 𝑁)) |
| 20 | 18, 19 | anbi12d 473 |
. . . . . 6
⊢ (𝑣 = ((int‘𝐽)‘𝑁) → ((𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁) ↔ (𝑆 ⊆ ((int‘𝐽)‘𝑁) ∧ ((int‘𝐽)‘𝑁) ⊆ 𝑁))) |
| 21 | 20 | rspcev 2878 |
. . . . 5
⊢
((((int‘𝐽)‘𝑁) ∈ 𝐽 ∧ (𝑆 ⊆ ((int‘𝐽)‘𝑁) ∧ ((int‘𝐽)‘𝑁) ⊆ 𝑁)) → ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁)) |
| 22 | 14, 15, 17, 21 | syl12anc 1248 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁)) |
| 23 | 22 | ex 115 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ ((int‘𝐽)‘𝑁) → ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁))) |
| 24 | 10, 23 | impbid 129 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁))) |
| 25 | 4, 24 | bitrd 188 |
1
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁))) |