ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neiint GIF version

Theorem neiint 13196
Description: An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
neiint ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁)))

Proof of Theorem neiint
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . . 5 𝑋 = 𝐽
21isnei 13195 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑣𝐽 (𝑆𝑣𝑣𝑁))))
323adant3 1017 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑣𝐽 (𝑆𝑣𝑣𝑁))))
433anibar 1165 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∃𝑣𝐽 (𝑆𝑣𝑣𝑁)))
5 simprrl 539 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ (𝑣𝐽 ∧ (𝑆𝑣𝑣𝑁))) → 𝑆𝑣)
61ssntr 13173 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑁𝑋) ∧ (𝑣𝐽𝑣𝑁)) → 𝑣 ⊆ ((int‘𝐽)‘𝑁))
763adantl2 1154 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ (𝑣𝐽𝑣𝑁)) → 𝑣 ⊆ ((int‘𝐽)‘𝑁))
87adantrrl 486 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ (𝑣𝐽 ∧ (𝑆𝑣𝑣𝑁))) → 𝑣 ⊆ ((int‘𝐽)‘𝑁))
95, 8sstrd 3163 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ (𝑣𝐽 ∧ (𝑆𝑣𝑣𝑁))) → 𝑆 ⊆ ((int‘𝐽)‘𝑁))
109rexlimdvaa 2593 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (∃𝑣𝐽 (𝑆𝑣𝑣𝑁) → 𝑆 ⊆ ((int‘𝐽)‘𝑁)))
11 simpl1 1000 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝐽 ∈ Top)
12 simpl3 1002 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝑁𝑋)
131ntropn 13168 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁𝑋) → ((int‘𝐽)‘𝑁) ∈ 𝐽)
1411, 12, 13syl2anc 411 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ((int‘𝐽)‘𝑁) ∈ 𝐽)
15 simpr 110 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝑆 ⊆ ((int‘𝐽)‘𝑁))
161ntrss2 13172 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁𝑋) → ((int‘𝐽)‘𝑁) ⊆ 𝑁)
1711, 12, 16syl2anc 411 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ((int‘𝐽)‘𝑁) ⊆ 𝑁)
18 sseq2 3177 . . . . . . 7 (𝑣 = ((int‘𝐽)‘𝑁) → (𝑆𝑣𝑆 ⊆ ((int‘𝐽)‘𝑁)))
19 sseq1 3176 . . . . . . 7 (𝑣 = ((int‘𝐽)‘𝑁) → (𝑣𝑁 ↔ ((int‘𝐽)‘𝑁) ⊆ 𝑁))
2018, 19anbi12d 473 . . . . . 6 (𝑣 = ((int‘𝐽)‘𝑁) → ((𝑆𝑣𝑣𝑁) ↔ (𝑆 ⊆ ((int‘𝐽)‘𝑁) ∧ ((int‘𝐽)‘𝑁) ⊆ 𝑁)))
2120rspcev 2839 . . . . 5 ((((int‘𝐽)‘𝑁) ∈ 𝐽 ∧ (𝑆 ⊆ ((int‘𝐽)‘𝑁) ∧ ((int‘𝐽)‘𝑁) ⊆ 𝑁)) → ∃𝑣𝐽 (𝑆𝑣𝑣𝑁))
2214, 15, 17, 21syl12anc 1236 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ∃𝑣𝐽 (𝑆𝑣𝑣𝑁))
2322ex 115 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑆 ⊆ ((int‘𝐽)‘𝑁) → ∃𝑣𝐽 (𝑆𝑣𝑣𝑁)))
2410, 23impbid 129 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (∃𝑣𝐽 (𝑆𝑣𝑣𝑁) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁)))
254, 24bitrd 188 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2146  wrex 2454  wss 3127   cuni 3805  cfv 5208  Topctop 13046  intcnt 13144  neicnei 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-top 13047  df-ntr 13147  df-nei 13190
This theorem is referenced by:  topssnei  13213  iscnp4  13269
  Copyright terms: Public domain W3C validator