| Step | Hyp | Ref
 | Expression | 
| 1 |   | neifval.1 | 
. . . . 5
⊢ 𝑋 = ∪
𝐽 | 
| 2 | 1 | isnei 14380 | 
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁)))) | 
| 3 | 2 | 3adant3 1019 | 
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁)))) | 
| 4 | 3 | 3anibar 1167 | 
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁))) | 
| 5 |   | simprrl 539 | 
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ (𝑣 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁))) → 𝑆 ⊆ 𝑣) | 
| 6 | 1 | ssntr 14358 | 
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑁 ⊆ 𝑋) ∧ (𝑣 ∈ 𝐽 ∧ 𝑣 ⊆ 𝑁)) → 𝑣 ⊆ ((int‘𝐽)‘𝑁)) | 
| 7 | 6 | 3adantl2 1156 | 
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ (𝑣 ∈ 𝐽 ∧ 𝑣 ⊆ 𝑁)) → 𝑣 ⊆ ((int‘𝐽)‘𝑁)) | 
| 8 | 7 | adantrrl 486 | 
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ (𝑣 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁))) → 𝑣 ⊆ ((int‘𝐽)‘𝑁)) | 
| 9 | 5, 8 | sstrd 3193 | 
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ (𝑣 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁))) → 𝑆 ⊆ ((int‘𝐽)‘𝑁)) | 
| 10 | 9 | rexlimdvaa 2615 | 
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁) → 𝑆 ⊆ ((int‘𝐽)‘𝑁))) | 
| 11 |   | simpl1 1002 | 
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝐽 ∈ Top) | 
| 12 |   | simpl3 1004 | 
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝑁 ⊆ 𝑋) | 
| 13 | 1 | ntropn 14353 | 
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑁 ⊆ 𝑋) → ((int‘𝐽)‘𝑁) ∈ 𝐽) | 
| 14 | 11, 12, 13 | syl2anc 411 | 
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ((int‘𝐽)‘𝑁) ∈ 𝐽) | 
| 15 |   | simpr 110 | 
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → 𝑆 ⊆ ((int‘𝐽)‘𝑁)) | 
| 16 | 1 | ntrss2 14357 | 
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑁 ⊆ 𝑋) → ((int‘𝐽)‘𝑁) ⊆ 𝑁) | 
| 17 | 11, 12, 16 | syl2anc 411 | 
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ((int‘𝐽)‘𝑁) ⊆ 𝑁) | 
| 18 |   | sseq2 3207 | 
. . . . . . 7
⊢ (𝑣 = ((int‘𝐽)‘𝑁) → (𝑆 ⊆ 𝑣 ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁))) | 
| 19 |   | sseq1 3206 | 
. . . . . . 7
⊢ (𝑣 = ((int‘𝐽)‘𝑁) → (𝑣 ⊆ 𝑁 ↔ ((int‘𝐽)‘𝑁) ⊆ 𝑁)) | 
| 20 | 18, 19 | anbi12d 473 | 
. . . . . 6
⊢ (𝑣 = ((int‘𝐽)‘𝑁) → ((𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁) ↔ (𝑆 ⊆ ((int‘𝐽)‘𝑁) ∧ ((int‘𝐽)‘𝑁) ⊆ 𝑁))) | 
| 21 | 20 | rspcev 2868 | 
. . . . 5
⊢
((((int‘𝐽)‘𝑁) ∈ 𝐽 ∧ (𝑆 ⊆ ((int‘𝐽)‘𝑁) ∧ ((int‘𝐽)‘𝑁) ⊆ 𝑁)) → ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁)) | 
| 22 | 14, 15, 17, 21 | syl12anc 1247 | 
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑁)) → ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁)) | 
| 23 | 22 | ex 115 | 
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ ((int‘𝐽)‘𝑁) → ∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁))) | 
| 24 | 10, 23 | impbid 129 | 
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (∃𝑣 ∈ 𝐽 (𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑁) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁))) | 
| 25 | 4, 24 | bitrd 188 | 
1
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁))) |