ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neissex GIF version

Theorem neissex 14752
Description: For any neighborhood 𝑁 of 𝑆, there is a neighborhood 𝑥 of 𝑆 such that 𝑁 is a neighborhood of all subsets of 𝑥. Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
Assertion
Ref Expression
neissex ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦

Proof of Theorem neissex
StepHypRef Expression
1 neii2 14736 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥𝐽 (𝑆𝑥𝑥𝑁))
2 opnneiss 14745 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑆𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
323expb 1207 . . . 4 ((𝐽 ∈ Top ∧ (𝑥𝐽𝑆𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
43adantrrr 487 . . 3 ((𝐽 ∈ Top ∧ (𝑥𝐽 ∧ (𝑆𝑥𝑥𝑁))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
54adantlr 477 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽 ∧ (𝑆𝑥𝑥𝑁))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
6 simplll 533 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) ∧ 𝑦𝑥) → 𝐽 ∈ Top)
7 simpll 527 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) → 𝐽 ∈ Top)
8 simpr 110 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) → 𝑥𝐽)
9 eqid 2207 . . . . . . . . . . . 12 𝐽 = 𝐽
109neii1 14734 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 𝐽)
1110adantr 276 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) → 𝑁 𝐽)
129opnssneib 14743 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑁 𝐽) → (𝑥𝑁𝑁 ∈ ((nei‘𝐽)‘𝑥)))
137, 8, 11, 12syl3anc 1250 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) → (𝑥𝑁𝑁 ∈ ((nei‘𝐽)‘𝑥)))
1413biimpa 296 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) ∧ 𝑥𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑥))
1514anasss 399 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) → 𝑁 ∈ ((nei‘𝐽)‘𝑥))
1615adantr 276 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) ∧ 𝑦𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑥))
17 simpr 110 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) ∧ 𝑦𝑥) → 𝑦𝑥)
18 neiss 14737 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑥) ∧ 𝑦𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑦))
196, 16, 17, 18syl3anc 1250 . . . . 5 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) ∧ 𝑦𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑦))
2019ex 115 . . . 4 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) → (𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
2120adantrrl 486 . . 3 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽 ∧ (𝑆𝑥𝑥𝑁))) → (𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
2221alrimiv 1898 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽 ∧ (𝑆𝑥𝑥𝑁))) → ∀𝑦(𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
231, 5, 22reximssdv 2612 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371  wcel 2178  wrex 2487  wss 3174   cuni 3864  cfv 5290  Topctop 14584  neicnei 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-top 14585  df-nei 14726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator