ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neissex GIF version

Theorem neissex 14670
Description: For any neighborhood 𝑁 of 𝑆, there is a neighborhood 𝑥 of 𝑆 such that 𝑁 is a neighborhood of all subsets of 𝑥. Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
Assertion
Ref Expression
neissex ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦

Proof of Theorem neissex
StepHypRef Expression
1 neii2 14654 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥𝐽 (𝑆𝑥𝑥𝑁))
2 opnneiss 14663 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑆𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
323expb 1207 . . . 4 ((𝐽 ∈ Top ∧ (𝑥𝐽𝑆𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
43adantrrr 487 . . 3 ((𝐽 ∈ Top ∧ (𝑥𝐽 ∧ (𝑆𝑥𝑥𝑁))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
54adantlr 477 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽 ∧ (𝑆𝑥𝑥𝑁))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
6 simplll 533 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) ∧ 𝑦𝑥) → 𝐽 ∈ Top)
7 simpll 527 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) → 𝐽 ∈ Top)
8 simpr 110 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) → 𝑥𝐽)
9 eqid 2205 . . . . . . . . . . . 12 𝐽 = 𝐽
109neii1 14652 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 𝐽)
1110adantr 276 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) → 𝑁 𝐽)
129opnssneib 14661 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑁 𝐽) → (𝑥𝑁𝑁 ∈ ((nei‘𝐽)‘𝑥)))
137, 8, 11, 12syl3anc 1250 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) → (𝑥𝑁𝑁 ∈ ((nei‘𝐽)‘𝑥)))
1413biimpa 296 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) ∧ 𝑥𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑥))
1514anasss 399 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) → 𝑁 ∈ ((nei‘𝐽)‘𝑥))
1615adantr 276 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) ∧ 𝑦𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑥))
17 simpr 110 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) ∧ 𝑦𝑥) → 𝑦𝑥)
18 neiss 14655 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑥) ∧ 𝑦𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑦))
196, 16, 17, 18syl3anc 1250 . . . . 5 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) ∧ 𝑦𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑦))
2019ex 115 . . . 4 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) → (𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
2120adantrrl 486 . . 3 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽 ∧ (𝑆𝑥𝑥𝑁))) → (𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
2221alrimiv 1897 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽 ∧ (𝑆𝑥𝑥𝑁))) → ∀𝑦(𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
231, 5, 22reximssdv 2610 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371  wcel 2176  wrex 2485  wss 3166   cuni 3850  cfv 5272  Topctop 14502  neicnei 14643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-top 14503  df-nei 14644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator