Proof of Theorem neissex
Step | Hyp | Ref
| Expression |
1 | | neii2 12789 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁)) |
2 | | opnneiss 12798 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) |
3 | 2 | 3expb 1194 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) |
4 | 3 | adantrrr 479 |
. . 3
⊢ ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) |
5 | 4 | adantlr 469 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) |
6 | | simplll 523 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁)) ∧ 𝑦 ⊆ 𝑥) → 𝐽 ∈ Top) |
7 | | simpll 519 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝐽) → 𝐽 ∈ Top) |
8 | | simpr 109 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐽) |
9 | | eqid 2165 |
. . . . . . . . . . . 12
⊢ ∪ 𝐽 =
∪ 𝐽 |
10 | 9 | neii1 12787 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 ⊆ ∪ 𝐽) |
11 | 10 | adantr 274 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝐽) → 𝑁 ⊆ ∪ 𝐽) |
12 | 9 | opnssneib 12796 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑁 ⊆ ∪ 𝐽) → (𝑥 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑥))) |
13 | 7, 8, 11, 12 | syl3anc 1228 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝐽) → (𝑥 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑥))) |
14 | 13 | biimpa 294 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝐽) ∧ 𝑥 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑥)) |
15 | 14 | anasss 397 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁)) → 𝑁 ∈ ((nei‘𝐽)‘𝑥)) |
16 | 15 | adantr 274 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁)) ∧ 𝑦 ⊆ 𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑥)) |
17 | | simpr 109 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁)) ∧ 𝑦 ⊆ 𝑥) → 𝑦 ⊆ 𝑥) |
18 | | neiss 12790 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑥) ∧ 𝑦 ⊆ 𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑦)) |
19 | 6, 16, 17, 18 | syl3anc 1228 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁)) ∧ 𝑦 ⊆ 𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑦)) |
20 | 19 | ex 114 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁)) → (𝑦 ⊆ 𝑥 → 𝑁 ∈ ((nei‘𝐽)‘𝑦))) |
21 | 20 | adantrrl 478 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁))) → (𝑦 ⊆ 𝑥 → 𝑁 ∈ ((nei‘𝐽)‘𝑦))) |
22 | 21 | alrimiv 1862 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁))) → ∀𝑦(𝑦 ⊆ 𝑥 → 𝑁 ∈ ((nei‘𝐽)‘𝑦))) |
23 | 1, 5, 22 | reximssdv 2570 |
1
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦 ⊆ 𝑥 → 𝑁 ∈ ((nei‘𝐽)‘𝑦))) |