Step | Hyp | Ref
| Expression |
1 | | neii2 13734 |
. 2
β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β βπ₯ β π½ (π β π₯ β§ π₯ β π)) |
2 | | opnneiss 13743 |
. . . . 5
β’ ((π½ β Top β§ π₯ β π½ β§ π β π₯) β π₯ β ((neiβπ½)βπ)) |
3 | 2 | 3expb 1204 |
. . . 4
β’ ((π½ β Top β§ (π₯ β π½ β§ π β π₯)) β π₯ β ((neiβπ½)βπ)) |
4 | 3 | adantrrr 487 |
. . 3
β’ ((π½ β Top β§ (π₯ β π½ β§ (π β π₯ β§ π₯ β π))) β π₯ β ((neiβπ½)βπ)) |
5 | 4 | adantlr 477 |
. 2
β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π₯ β π½ β§ (π β π₯ β§ π₯ β π))) β π₯ β ((neiβπ½)βπ)) |
6 | | simplll 533 |
. . . . . 6
β’ ((((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π₯ β π½ β§ π₯ β π)) β§ π¦ β π₯) β π½ β Top) |
7 | | simpll 527 |
. . . . . . . . . 10
β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ π₯ β π½) β π½ β Top) |
8 | | simpr 110 |
. . . . . . . . . 10
β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ π₯ β π½) β π₯ β π½) |
9 | | eqid 2177 |
. . . . . . . . . . . 12
β’ βͺ π½ =
βͺ π½ |
10 | 9 | neii1 13732 |
. . . . . . . . . . 11
β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β π β βͺ π½) |
11 | 10 | adantr 276 |
. . . . . . . . . 10
β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ π₯ β π½) β π β βͺ π½) |
12 | 9 | opnssneib 13741 |
. . . . . . . . . 10
β’ ((π½ β Top β§ π₯ β π½ β§ π β βͺ π½) β (π₯ β π β π β ((neiβπ½)βπ₯))) |
13 | 7, 8, 11, 12 | syl3anc 1238 |
. . . . . . . . 9
β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ π₯ β π½) β (π₯ β π β π β ((neiβπ½)βπ₯))) |
14 | 13 | biimpa 296 |
. . . . . . . 8
β’ ((((π½ β Top β§ π β ((neiβπ½)βπ)) β§ π₯ β π½) β§ π₯ β π) β π β ((neiβπ½)βπ₯)) |
15 | 14 | anasss 399 |
. . . . . . 7
β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π₯ β π½ β§ π₯ β π)) β π β ((neiβπ½)βπ₯)) |
16 | 15 | adantr 276 |
. . . . . 6
β’ ((((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π₯ β π½ β§ π₯ β π)) β§ π¦ β π₯) β π β ((neiβπ½)βπ₯)) |
17 | | simpr 110 |
. . . . . 6
β’ ((((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π₯ β π½ β§ π₯ β π)) β§ π¦ β π₯) β π¦ β π₯) |
18 | | neiss 13735 |
. . . . . 6
β’ ((π½ β Top β§ π β ((neiβπ½)βπ₯) β§ π¦ β π₯) β π β ((neiβπ½)βπ¦)) |
19 | 6, 16, 17, 18 | syl3anc 1238 |
. . . . 5
β’ ((((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π₯ β π½ β§ π₯ β π)) β§ π¦ β π₯) β π β ((neiβπ½)βπ¦)) |
20 | 19 | ex 115 |
. . . 4
β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π₯ β π½ β§ π₯ β π)) β (π¦ β π₯ β π β ((neiβπ½)βπ¦))) |
21 | 20 | adantrrl 486 |
. . 3
β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π₯ β π½ β§ (π β π₯ β§ π₯ β π))) β (π¦ β π₯ β π β ((neiβπ½)βπ¦))) |
22 | 21 | alrimiv 1874 |
. 2
β’ (((π½ β Top β§ π β ((neiβπ½)βπ)) β§ (π₯ β π½ β§ (π β π₯ β§ π₯ β π))) β βπ¦(π¦ β π₯ β π β ((neiβπ½)βπ¦))) |
23 | 1, 5, 22 | reximssdv 2581 |
1
β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β βπ₯ β ((neiβπ½)βπ)βπ¦(π¦ β π₯ β π β ((neiβπ½)βπ¦))) |