ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neissex GIF version

Theorem neissex 13750
Description: For any neighborhood 𝑁 of 𝑆, there is a neighborhood π‘₯ of 𝑆 such that 𝑁 is a neighborhood of all subsets of π‘₯. Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
Assertion
Ref Expression
neissex ((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜π‘†)βˆ€π‘¦(𝑦 βŠ† π‘₯ β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘¦)))
Distinct variable groups:   π‘₯,𝑦,𝐽   π‘₯,𝑁,𝑦   π‘₯,𝑆,𝑦

Proof of Theorem neissex
StepHypRef Expression
1 neii2 13734 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑆 βŠ† π‘₯ ∧ π‘₯ βŠ† 𝑁))
2 opnneiss 13743 . . . . 5 ((𝐽 ∈ Top ∧ π‘₯ ∈ 𝐽 ∧ 𝑆 βŠ† π‘₯) β†’ π‘₯ ∈ ((neiβ€˜π½)β€˜π‘†))
323expb 1204 . . . 4 ((𝐽 ∈ Top ∧ (π‘₯ ∈ 𝐽 ∧ 𝑆 βŠ† π‘₯)) β†’ π‘₯ ∈ ((neiβ€˜π½)β€˜π‘†))
43adantrrr 487 . . 3 ((𝐽 ∈ Top ∧ (π‘₯ ∈ 𝐽 ∧ (𝑆 βŠ† π‘₯ ∧ π‘₯ βŠ† 𝑁))) β†’ π‘₯ ∈ ((neiβ€˜π½)β€˜π‘†))
54adantlr 477 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) ∧ (π‘₯ ∈ 𝐽 ∧ (𝑆 βŠ† π‘₯ ∧ π‘₯ βŠ† 𝑁))) β†’ π‘₯ ∈ ((neiβ€˜π½)β€˜π‘†))
6 simplll 533 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) ∧ (π‘₯ ∈ 𝐽 ∧ π‘₯ βŠ† 𝑁)) ∧ 𝑦 βŠ† π‘₯) β†’ 𝐽 ∈ Top)
7 simpll 527 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) ∧ π‘₯ ∈ 𝐽) β†’ 𝐽 ∈ Top)
8 simpr 110 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) ∧ π‘₯ ∈ 𝐽) β†’ π‘₯ ∈ 𝐽)
9 eqid 2177 . . . . . . . . . . . 12 βˆͺ 𝐽 = βˆͺ 𝐽
109neii1 13732 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ 𝑁 βŠ† βˆͺ 𝐽)
1110adantr 276 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) ∧ π‘₯ ∈ 𝐽) β†’ 𝑁 βŠ† βˆͺ 𝐽)
129opnssneib 13741 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ π‘₯ ∈ 𝐽 ∧ 𝑁 βŠ† βˆͺ 𝐽) β†’ (π‘₯ βŠ† 𝑁 ↔ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘₯)))
137, 8, 11, 12syl3anc 1238 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) ∧ π‘₯ ∈ 𝐽) β†’ (π‘₯ βŠ† 𝑁 ↔ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘₯)))
1413biimpa 296 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) ∧ π‘₯ ∈ 𝐽) ∧ π‘₯ βŠ† 𝑁) β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘₯))
1514anasss 399 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) ∧ (π‘₯ ∈ 𝐽 ∧ π‘₯ βŠ† 𝑁)) β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘₯))
1615adantr 276 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) ∧ (π‘₯ ∈ 𝐽 ∧ π‘₯ βŠ† 𝑁)) ∧ 𝑦 βŠ† π‘₯) β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘₯))
17 simpr 110 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) ∧ (π‘₯ ∈ 𝐽 ∧ π‘₯ βŠ† 𝑁)) ∧ 𝑦 βŠ† π‘₯) β†’ 𝑦 βŠ† π‘₯)
18 neiss 13735 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘₯) ∧ 𝑦 βŠ† π‘₯) β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘¦))
196, 16, 17, 18syl3anc 1238 . . . . 5 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) ∧ (π‘₯ ∈ 𝐽 ∧ π‘₯ βŠ† 𝑁)) ∧ 𝑦 βŠ† π‘₯) β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘¦))
2019ex 115 . . . 4 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) ∧ (π‘₯ ∈ 𝐽 ∧ π‘₯ βŠ† 𝑁)) β†’ (𝑦 βŠ† π‘₯ β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘¦)))
2120adantrrl 486 . . 3 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) ∧ (π‘₯ ∈ 𝐽 ∧ (𝑆 βŠ† π‘₯ ∧ π‘₯ βŠ† 𝑁))) β†’ (𝑦 βŠ† π‘₯ β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘¦)))
2221alrimiv 1874 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) ∧ (π‘₯ ∈ 𝐽 ∧ (𝑆 βŠ† π‘₯ ∧ π‘₯ βŠ† 𝑁))) β†’ βˆ€π‘¦(𝑦 βŠ† π‘₯ β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘¦)))
231, 5, 22reximssdv 2581 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜π‘†)βˆ€π‘¦(𝑦 βŠ† π‘₯ β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘¦)))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105  βˆ€wal 1351   ∈ wcel 2148  βˆƒwrex 2456   βŠ† wss 3131  βˆͺ cuni 3811  β€˜cfv 5218  Topctop 13582  neicnei 13723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-top 13583  df-nei 13724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator