ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stconst GIF version

Theorem 1stconst 6236
Description: The mapping of a restriction of the 1st function to a constant function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
1stconst (šµ ∈ š‘‰ → (1st ↾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})–1-1-ontoā†’š“)

Proof of Theorem 1stconst
Dummy variables š‘„ š‘¦ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snmg 3722 . . 3 (šµ ∈ š‘‰ → āˆƒš‘„ š‘„ ∈ {šµ})
2 fo1stresm 6176 . . 3 (āˆƒš‘„ š‘„ ∈ {šµ} → (1st ↾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})–ontoā†’š“)
31, 2syl 14 . 2 (šµ ∈ š‘‰ → (1st ↾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})–ontoā†’š“)
4 moeq 2924 . . . . . 6 ∃*š‘„ š‘„ = āŸØš‘¦, šµāŸ©
54moani 2106 . . . . 5 ∃*š‘„(š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)
6 vex 2752 . . . . . . . 8 š‘¦ ∈ V
76brres 4925 . . . . . . 7 (š‘„(1st ↾ (š“ Ɨ {šµ}))š‘¦ ↔ (š‘„1st š‘¦ ∧ š‘„ ∈ (š“ Ɨ {šµ})))
8 fo1st 6172 . . . . . . . . . . 11 1st :V–onto→V
9 fofn 5452 . . . . . . . . . . 11 (1st :V–onto→V → 1st Fn V)
108, 9ax-mp 5 . . . . . . . . . 10 1st Fn V
11 vex 2752 . . . . . . . . . 10 š‘„ ∈ V
12 fnbrfvb 5569 . . . . . . . . . 10 ((1st Fn V ∧ š‘„ ∈ V) → ((1st ā€˜š‘„) = š‘¦ ↔ š‘„1st š‘¦))
1310, 11, 12mp2an 426 . . . . . . . . 9 ((1st ā€˜š‘„) = š‘¦ ↔ š‘„1st š‘¦)
1413anbi1i 458 . . . . . . . 8 (((1st ā€˜š‘„) = š‘¦ ∧ š‘„ ∈ (š“ Ɨ {šµ})) ↔ (š‘„1st š‘¦ ∧ š‘„ ∈ (š“ Ɨ {šµ})))
15 elxp7 6185 . . . . . . . . . . 11 (š‘„ ∈ (š“ Ɨ {šµ}) ↔ (š‘„ ∈ (V Ɨ V) ∧ ((1st ā€˜š‘„) ∈ š“ ∧ (2nd ā€˜š‘„) ∈ {šµ})))
16 eleq1 2250 . . . . . . . . . . . . . . 15 ((1st ā€˜š‘„) = š‘¦ → ((1st ā€˜š‘„) ∈ š“ ↔ š‘¦ ∈ š“))
1716biimpa 296 . . . . . . . . . . . . . 14 (((1st ā€˜š‘„) = š‘¦ ∧ (1st ā€˜š‘„) ∈ š“) → š‘¦ ∈ š“)
1817adantrr 479 . . . . . . . . . . . . 13 (((1st ā€˜š‘„) = š‘¦ ∧ ((1st ā€˜š‘„) ∈ š“ ∧ (2nd ā€˜š‘„) ∈ {šµ})) → š‘¦ ∈ š“)
1918adantrl 478 . . . . . . . . . . . 12 (((1st ā€˜š‘„) = š‘¦ ∧ (š‘„ ∈ (V Ɨ V) ∧ ((1st ā€˜š‘„) ∈ š“ ∧ (2nd ā€˜š‘„) ∈ {šµ}))) → š‘¦ ∈ š“)
20 elsni 3622 . . . . . . . . . . . . . 14 ((2nd ā€˜š‘„) ∈ {šµ} → (2nd ā€˜š‘„) = šµ)
21 eqopi 6187 . . . . . . . . . . . . . . 15 ((š‘„ ∈ (V Ɨ V) ∧ ((1st ā€˜š‘„) = š‘¦ ∧ (2nd ā€˜š‘„) = šµ)) → š‘„ = āŸØš‘¦, šµāŸ©)
2221an12s 565 . . . . . . . . . . . . . 14 (((1st ā€˜š‘„) = š‘¦ ∧ (š‘„ ∈ (V Ɨ V) ∧ (2nd ā€˜š‘„) = šµ)) → š‘„ = āŸØš‘¦, šµāŸ©)
2320, 22sylanr2 405 . . . . . . . . . . . . 13 (((1st ā€˜š‘„) = š‘¦ ∧ (š‘„ ∈ (V Ɨ V) ∧ (2nd ā€˜š‘„) ∈ {šµ})) → š‘„ = āŸØš‘¦, šµāŸ©)
2423adantrrl 486 . . . . . . . . . . . 12 (((1st ā€˜š‘„) = š‘¦ ∧ (š‘„ ∈ (V Ɨ V) ∧ ((1st ā€˜š‘„) ∈ š“ ∧ (2nd ā€˜š‘„) ∈ {šµ}))) → š‘„ = āŸØš‘¦, šµāŸ©)
2519, 24jca 306 . . . . . . . . . . 11 (((1st ā€˜š‘„) = š‘¦ ∧ (š‘„ ∈ (V Ɨ V) ∧ ((1st ā€˜š‘„) ∈ š“ ∧ (2nd ā€˜š‘„) ∈ {šµ}))) → (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©))
2615, 25sylan2b 287 . . . . . . . . . 10 (((1st ā€˜š‘„) = š‘¦ ∧ š‘„ ∈ (š“ Ɨ {šµ})) → (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©))
2726adantl 277 . . . . . . . . 9 ((šµ ∈ š‘‰ ∧ ((1st ā€˜š‘„) = š‘¦ ∧ š‘„ ∈ (š“ Ɨ {šµ}))) → (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©))
28 simprr 531 . . . . . . . . . . . 12 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → š‘„ = āŸØš‘¦, šµāŸ©)
2928fveq2d 5531 . . . . . . . . . . 11 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → (1st ā€˜š‘„) = (1st ā€˜āŸØš‘¦, šµāŸ©))
30 simprl 529 . . . . . . . . . . . 12 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → š‘¦ ∈ š“)
31 simpl 109 . . . . . . . . . . . 12 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → šµ ∈ š‘‰)
32 op1stg 6165 . . . . . . . . . . . 12 ((š‘¦ ∈ š“ ∧ šµ ∈ š‘‰) → (1st ā€˜āŸØš‘¦, šµāŸ©) = š‘¦)
3330, 31, 32syl2anc 411 . . . . . . . . . . 11 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → (1st ā€˜āŸØš‘¦, šµāŸ©) = š‘¦)
3429, 33eqtrd 2220 . . . . . . . . . 10 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → (1st ā€˜š‘„) = š‘¦)
35 snidg 3633 . . . . . . . . . . . . 13 (šµ ∈ š‘‰ → šµ ∈ {šµ})
3635adantr 276 . . . . . . . . . . . 12 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → šµ ∈ {šµ})
37 opelxpi 4670 . . . . . . . . . . . 12 ((š‘¦ ∈ š“ ∧ šµ ∈ {šµ}) → āŸØš‘¦, šµāŸ© ∈ (š“ Ɨ {šµ}))
3830, 36, 37syl2anc 411 . . . . . . . . . . 11 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → āŸØš‘¦, šµāŸ© ∈ (š“ Ɨ {šµ}))
3928, 38eqeltrd 2264 . . . . . . . . . 10 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → š‘„ ∈ (š“ Ɨ {šµ}))
4034, 39jca 306 . . . . . . . . 9 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → ((1st ā€˜š‘„) = š‘¦ ∧ š‘„ ∈ (š“ Ɨ {šµ})))
4127, 40impbida 596 . . . . . . . 8 (šµ ∈ š‘‰ → (((1st ā€˜š‘„) = š‘¦ ∧ š‘„ ∈ (š“ Ɨ {šµ})) ↔ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)))
4214, 41bitr3id 194 . . . . . . 7 (šµ ∈ š‘‰ → ((š‘„1st š‘¦ ∧ š‘„ ∈ (š“ Ɨ {šµ})) ↔ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)))
437, 42bitrid 192 . . . . . 6 (šµ ∈ š‘‰ → (š‘„(1st ↾ (š“ Ɨ {šµ}))š‘¦ ↔ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)))
4443mobidv 2072 . . . . 5 (šµ ∈ š‘‰ → (∃*š‘„ š‘„(1st ↾ (š“ Ɨ {šµ}))š‘¦ ↔ ∃*š‘„(š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)))
455, 44mpbiri 168 . . . 4 (šµ ∈ š‘‰ → ∃*š‘„ š‘„(1st ↾ (š“ Ɨ {šµ}))š‘¦)
4645alrimiv 1884 . . 3 (šµ ∈ š‘‰ → āˆ€š‘¦āˆƒ*š‘„ š‘„(1st ↾ (š“ Ɨ {šµ}))š‘¦)
47 funcnv2 5288 . . 3 (Fun ā—”(1st ↾ (š“ Ɨ {šµ})) ↔ āˆ€š‘¦āˆƒ*š‘„ š‘„(1st ↾ (š“ Ɨ {šµ}))š‘¦)
4846, 47sylibr 134 . 2 (šµ ∈ š‘‰ → Fun ā—”(1st ↾ (š“ Ɨ {šµ})))
49 dff1o3 5479 . 2 ((1st ↾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})–1-1-ontoā†’š“ ↔ ((1st ↾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})–ontoā†’š“ ∧ Fun ā—”(1st ↾ (š“ Ɨ {šµ}))))
503, 48, 49sylanbrc 417 1 (šµ ∈ š‘‰ → (1st ↾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})–1-1-ontoā†’š“)
Colors of variables: wff set class
Syntax hints:   → wi 4   ∧ wa 104   ↔ wb 105  āˆ€wal 1361   = wceq 1363  āˆƒwex 1502  āˆƒ*wmo 2037   ∈ wcel 2158  Vcvv 2749  {csn 3604  āŸØcop 3607   class class class wbr 4015   Ɨ cxp 4636  ā—”ccnv 4637   ↾ cres 4640  Fun wfun 5222   Fn wfn 5223  ā€“onto→wfo 5226  ā€“1-1-onto→wf1o 5227  ā€˜cfv 5228  1st c1st 6153  2nd c2nd 6154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-1st 6155  df-2nd 6156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator