ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stconst GIF version

Theorem 1stconst 6200
Description: The mapping of a restriction of the 1st function to a constant function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
1stconst (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴)

Proof of Theorem 1stconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snmg 3701 . . 3 (𝐵𝑉 → ∃𝑥 𝑥 ∈ {𝐵})
2 fo1stresm 6140 . . 3 (∃𝑥 𝑥 ∈ {𝐵} → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴)
31, 2syl 14 . 2 (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴)
4 moeq 2905 . . . . . 6 ∃*𝑥 𝑥 = ⟨𝑦, 𝐵
54moani 2089 . . . . 5 ∃*𝑥(𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)
6 vex 2733 . . . . . . . 8 𝑦 ∈ V
76brres 4897 . . . . . . 7 (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑥1st 𝑦𝑥 ∈ (𝐴 × {𝐵})))
8 fo1st 6136 . . . . . . . . . . 11 1st :V–onto→V
9 fofn 5422 . . . . . . . . . . 11 (1st :V–onto→V → 1st Fn V)
108, 9ax-mp 5 . . . . . . . . . 10 1st Fn V
11 vex 2733 . . . . . . . . . 10 𝑥 ∈ V
12 fnbrfvb 5537 . . . . . . . . . 10 ((1st Fn V ∧ 𝑥 ∈ V) → ((1st𝑥) = 𝑦𝑥1st 𝑦))
1310, 11, 12mp2an 424 . . . . . . . . 9 ((1st𝑥) = 𝑦𝑥1st 𝑦)
1413anbi1i 455 . . . . . . . 8 (((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑥1st 𝑦𝑥 ∈ (𝐴 × {𝐵})))
15 elxp7 6149 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 × {𝐵}) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})))
16 eleq1 2233 . . . . . . . . . . . . . . 15 ((1st𝑥) = 𝑦 → ((1st𝑥) ∈ 𝐴𝑦𝐴))
1716biimpa 294 . . . . . . . . . . . . . 14 (((1st𝑥) = 𝑦 ∧ (1st𝑥) ∈ 𝐴) → 𝑦𝐴)
1817adantrr 476 . . . . . . . . . . . . 13 (((1st𝑥) = 𝑦 ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})) → 𝑦𝐴)
1918adantrl 475 . . . . . . . . . . . 12 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵}))) → 𝑦𝐴)
20 elsni 3601 . . . . . . . . . . . . . 14 ((2nd𝑥) ∈ {𝐵} → (2nd𝑥) = 𝐵)
21 eqopi 6151 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (V × V) ∧ ((1st𝑥) = 𝑦 ∧ (2nd𝑥) = 𝐵)) → 𝑥 = ⟨𝑦, 𝐵⟩)
2221an12s 560 . . . . . . . . . . . . . 14 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (2nd𝑥) = 𝐵)) → 𝑥 = ⟨𝑦, 𝐵⟩)
2320, 22sylanr2 403 . . . . . . . . . . . . 13 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (2nd𝑥) ∈ {𝐵})) → 𝑥 = ⟨𝑦, 𝐵⟩)
2423adantrrl 483 . . . . . . . . . . . 12 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵}))) → 𝑥 = ⟨𝑦, 𝐵⟩)
2519, 24jca 304 . . . . . . . . . . 11 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵}))) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
2615, 25sylan2b 285 . . . . . . . . . 10 (((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
2726adantl 275 . . . . . . . . 9 ((𝐵𝑉 ∧ ((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵}))) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
28 simprr 527 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑥 = ⟨𝑦, 𝐵⟩)
2928fveq2d 5500 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st𝑥) = (1st ‘⟨𝑦, 𝐵⟩))
30 simprl 526 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑦𝐴)
31 simpl 108 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝐵𝑉)
32 op1stg 6129 . . . . . . . . . . . 12 ((𝑦𝐴𝐵𝑉) → (1st ‘⟨𝑦, 𝐵⟩) = 𝑦)
3330, 31, 32syl2anc 409 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st ‘⟨𝑦, 𝐵⟩) = 𝑦)
3429, 33eqtrd 2203 . . . . . . . . . 10 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st𝑥) = 𝑦)
35 snidg 3612 . . . . . . . . . . . . 13 (𝐵𝑉𝐵 ∈ {𝐵})
3635adantr 274 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝐵 ∈ {𝐵})
37 opelxpi 4643 . . . . . . . . . . . 12 ((𝑦𝐴𝐵 ∈ {𝐵}) → ⟨𝑦, 𝐵⟩ ∈ (𝐴 × {𝐵}))
3830, 36, 37syl2anc 409 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → ⟨𝑦, 𝐵⟩ ∈ (𝐴 × {𝐵}))
3928, 38eqeltrd 2247 . . . . . . . . . 10 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑥 ∈ (𝐴 × {𝐵}))
4034, 39jca 304 . . . . . . . . 9 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → ((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})))
4127, 40impbida 591 . . . . . . . 8 (𝐵𝑉 → (((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
4214, 41bitr3id 193 . . . . . . 7 (𝐵𝑉 → ((𝑥1st 𝑦𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
437, 42syl5bb 191 . . . . . 6 (𝐵𝑉 → (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
4443mobidv 2055 . . . . 5 (𝐵𝑉 → (∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ ∃*𝑥(𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
455, 44mpbiri 167 . . . 4 (𝐵𝑉 → ∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
4645alrimiv 1867 . . 3 (𝐵𝑉 → ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
47 funcnv2 5258 . . 3 (Fun (1st ↾ (𝐴 × {𝐵})) ↔ ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
4846, 47sylibr 133 . 2 (𝐵𝑉 → Fun (1st ↾ (𝐴 × {𝐵})))
49 dff1o3 5448 . 2 ((1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴 ↔ ((1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴 ∧ Fun (1st ↾ (𝐴 × {𝐵}))))
503, 48, 49sylanbrc 415 1 (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346   = wceq 1348  wex 1485  ∃*wmo 2020  wcel 2141  Vcvv 2730  {csn 3583  cop 3586   class class class wbr 3989   × cxp 4609  ccnv 4610  cres 4613  Fun wfun 5192   Fn wfn 5193  ontowfo 5196  1-1-ontowf1o 5197  cfv 5198  1st c1st 6117  2nd c2nd 6118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator