ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stconst GIF version

Theorem 1stconst 6118
Description: The mapping of a restriction of the 1st function to a constant function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
1stconst (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴)

Proof of Theorem 1stconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snmg 3641 . . 3 (𝐵𝑉 → ∃𝑥 𝑥 ∈ {𝐵})
2 fo1stresm 6059 . . 3 (∃𝑥 𝑥 ∈ {𝐵} → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴)
31, 2syl 14 . 2 (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴)
4 moeq 2859 . . . . . 6 ∃*𝑥 𝑥 = ⟨𝑦, 𝐵
54moani 2069 . . . . 5 ∃*𝑥(𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)
6 vex 2689 . . . . . . . 8 𝑦 ∈ V
76brres 4825 . . . . . . 7 (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑥1st 𝑦𝑥 ∈ (𝐴 × {𝐵})))
8 fo1st 6055 . . . . . . . . . . 11 1st :V–onto→V
9 fofn 5347 . . . . . . . . . . 11 (1st :V–onto→V → 1st Fn V)
108, 9ax-mp 5 . . . . . . . . . 10 1st Fn V
11 vex 2689 . . . . . . . . . 10 𝑥 ∈ V
12 fnbrfvb 5462 . . . . . . . . . 10 ((1st Fn V ∧ 𝑥 ∈ V) → ((1st𝑥) = 𝑦𝑥1st 𝑦))
1310, 11, 12mp2an 422 . . . . . . . . 9 ((1st𝑥) = 𝑦𝑥1st 𝑦)
1413anbi1i 453 . . . . . . . 8 (((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑥1st 𝑦𝑥 ∈ (𝐴 × {𝐵})))
15 elxp7 6068 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 × {𝐵}) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})))
16 eleq1 2202 . . . . . . . . . . . . . . 15 ((1st𝑥) = 𝑦 → ((1st𝑥) ∈ 𝐴𝑦𝐴))
1716biimpa 294 . . . . . . . . . . . . . 14 (((1st𝑥) = 𝑦 ∧ (1st𝑥) ∈ 𝐴) → 𝑦𝐴)
1817adantrr 470 . . . . . . . . . . . . 13 (((1st𝑥) = 𝑦 ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})) → 𝑦𝐴)
1918adantrl 469 . . . . . . . . . . . 12 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵}))) → 𝑦𝐴)
20 elsni 3545 . . . . . . . . . . . . . 14 ((2nd𝑥) ∈ {𝐵} → (2nd𝑥) = 𝐵)
21 eqopi 6070 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (V × V) ∧ ((1st𝑥) = 𝑦 ∧ (2nd𝑥) = 𝐵)) → 𝑥 = ⟨𝑦, 𝐵⟩)
2221an12s 554 . . . . . . . . . . . . . 14 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (2nd𝑥) = 𝐵)) → 𝑥 = ⟨𝑦, 𝐵⟩)
2320, 22sylanr2 402 . . . . . . . . . . . . 13 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (2nd𝑥) ∈ {𝐵})) → 𝑥 = ⟨𝑦, 𝐵⟩)
2423adantrrl 477 . . . . . . . . . . . 12 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵}))) → 𝑥 = ⟨𝑦, 𝐵⟩)
2519, 24jca 304 . . . . . . . . . . 11 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵}))) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
2615, 25sylan2b 285 . . . . . . . . . 10 (((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
2726adantl 275 . . . . . . . . 9 ((𝐵𝑉 ∧ ((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵}))) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
28 simprr 521 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑥 = ⟨𝑦, 𝐵⟩)
2928fveq2d 5425 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st𝑥) = (1st ‘⟨𝑦, 𝐵⟩))
30 simprl 520 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑦𝐴)
31 simpl 108 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝐵𝑉)
32 op1stg 6048 . . . . . . . . . . . 12 ((𝑦𝐴𝐵𝑉) → (1st ‘⟨𝑦, 𝐵⟩) = 𝑦)
3330, 31, 32syl2anc 408 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st ‘⟨𝑦, 𝐵⟩) = 𝑦)
3429, 33eqtrd 2172 . . . . . . . . . 10 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st𝑥) = 𝑦)
35 snidg 3554 . . . . . . . . . . . . 13 (𝐵𝑉𝐵 ∈ {𝐵})
3635adantr 274 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝐵 ∈ {𝐵})
37 opelxpi 4571 . . . . . . . . . . . 12 ((𝑦𝐴𝐵 ∈ {𝐵}) → ⟨𝑦, 𝐵⟩ ∈ (𝐴 × {𝐵}))
3830, 36, 37syl2anc 408 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → ⟨𝑦, 𝐵⟩ ∈ (𝐴 × {𝐵}))
3928, 38eqeltrd 2216 . . . . . . . . . 10 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑥 ∈ (𝐴 × {𝐵}))
4034, 39jca 304 . . . . . . . . 9 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → ((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})))
4127, 40impbida 585 . . . . . . . 8 (𝐵𝑉 → (((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
4214, 41syl5bbr 193 . . . . . . 7 (𝐵𝑉 → ((𝑥1st 𝑦𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
437, 42syl5bb 191 . . . . . 6 (𝐵𝑉 → (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
4443mobidv 2035 . . . . 5 (𝐵𝑉 → (∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ ∃*𝑥(𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
455, 44mpbiri 167 . . . 4 (𝐵𝑉 → ∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
4645alrimiv 1846 . . 3 (𝐵𝑉 → ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
47 funcnv2 5183 . . 3 (Fun (1st ↾ (𝐴 × {𝐵})) ↔ ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
4846, 47sylibr 133 . 2 (𝐵𝑉 → Fun (1st ↾ (𝐴 × {𝐵})))
49 dff1o3 5373 . 2 ((1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴 ↔ ((1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴 ∧ Fun (1st ↾ (𝐴 × {𝐵}))))
503, 48, 49sylanbrc 413 1 (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1329   = wceq 1331  wex 1468  wcel 1480  ∃*wmo 2000  Vcvv 2686  {csn 3527  cop 3530   class class class wbr 3929   × cxp 4537  ccnv 4538  cres 4541  Fun wfun 5117   Fn wfn 5118  ontowfo 5121  1-1-ontowf1o 5122  cfv 5123  1st c1st 6036  2nd c2nd 6037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator