ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stconst GIF version

Theorem 1stconst 6084
Description: The mapping of a restriction of the 1st function to a constant function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
1stconst (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴)

Proof of Theorem 1stconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snmg 3609 . . 3 (𝐵𝑉 → ∃𝑥 𝑥 ∈ {𝐵})
2 fo1stresm 6025 . . 3 (∃𝑥 𝑥 ∈ {𝐵} → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴)
31, 2syl 14 . 2 (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴)
4 moeq 2830 . . . . . 6 ∃*𝑥 𝑥 = ⟨𝑦, 𝐵
54moani 2045 . . . . 5 ∃*𝑥(𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)
6 vex 2661 . . . . . . . 8 𝑦 ∈ V
76brres 4793 . . . . . . 7 (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑥1st 𝑦𝑥 ∈ (𝐴 × {𝐵})))
8 fo1st 6021 . . . . . . . . . . 11 1st :V–onto→V
9 fofn 5315 . . . . . . . . . . 11 (1st :V–onto→V → 1st Fn V)
108, 9ax-mp 5 . . . . . . . . . 10 1st Fn V
11 vex 2661 . . . . . . . . . 10 𝑥 ∈ V
12 fnbrfvb 5428 . . . . . . . . . 10 ((1st Fn V ∧ 𝑥 ∈ V) → ((1st𝑥) = 𝑦𝑥1st 𝑦))
1310, 11, 12mp2an 420 . . . . . . . . 9 ((1st𝑥) = 𝑦𝑥1st 𝑦)
1413anbi1i 451 . . . . . . . 8 (((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑥1st 𝑦𝑥 ∈ (𝐴 × {𝐵})))
15 elxp7 6034 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 × {𝐵}) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})))
16 eleq1 2178 . . . . . . . . . . . . . . 15 ((1st𝑥) = 𝑦 → ((1st𝑥) ∈ 𝐴𝑦𝐴))
1716biimpa 292 . . . . . . . . . . . . . 14 (((1st𝑥) = 𝑦 ∧ (1st𝑥) ∈ 𝐴) → 𝑦𝐴)
1817adantrr 468 . . . . . . . . . . . . 13 (((1st𝑥) = 𝑦 ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})) → 𝑦𝐴)
1918adantrl 467 . . . . . . . . . . . 12 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵}))) → 𝑦𝐴)
20 elsni 3513 . . . . . . . . . . . . . 14 ((2nd𝑥) ∈ {𝐵} → (2nd𝑥) = 𝐵)
21 eqopi 6036 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (V × V) ∧ ((1st𝑥) = 𝑦 ∧ (2nd𝑥) = 𝐵)) → 𝑥 = ⟨𝑦, 𝐵⟩)
2221an12s 537 . . . . . . . . . . . . . 14 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (2nd𝑥) = 𝐵)) → 𝑥 = ⟨𝑦, 𝐵⟩)
2320, 22sylanr2 400 . . . . . . . . . . . . 13 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (2nd𝑥) ∈ {𝐵})) → 𝑥 = ⟨𝑦, 𝐵⟩)
2423adantrrl 475 . . . . . . . . . . . 12 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵}))) → 𝑥 = ⟨𝑦, 𝐵⟩)
2519, 24jca 302 . . . . . . . . . . 11 (((1st𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵}))) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
2615, 25sylan2b 283 . . . . . . . . . 10 (((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
2726adantl 273 . . . . . . . . 9 ((𝐵𝑉 ∧ ((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵}))) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
28 simprr 504 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑥 = ⟨𝑦, 𝐵⟩)
2928fveq2d 5391 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st𝑥) = (1st ‘⟨𝑦, 𝐵⟩))
30 simprl 503 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑦𝐴)
31 simpl 108 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝐵𝑉)
32 op1stg 6014 . . . . . . . . . . . 12 ((𝑦𝐴𝐵𝑉) → (1st ‘⟨𝑦, 𝐵⟩) = 𝑦)
3330, 31, 32syl2anc 406 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st ‘⟨𝑦, 𝐵⟩) = 𝑦)
3429, 33eqtrd 2148 . . . . . . . . . 10 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st𝑥) = 𝑦)
35 snidg 3522 . . . . . . . . . . . . 13 (𝐵𝑉𝐵 ∈ {𝐵})
3635adantr 272 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝐵 ∈ {𝐵})
37 opelxpi 4539 . . . . . . . . . . . 12 ((𝑦𝐴𝐵 ∈ {𝐵}) → ⟨𝑦, 𝐵⟩ ∈ (𝐴 × {𝐵}))
3830, 36, 37syl2anc 406 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → ⟨𝑦, 𝐵⟩ ∈ (𝐴 × {𝐵}))
3928, 38eqeltrd 2192 . . . . . . . . . 10 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑥 ∈ (𝐴 × {𝐵}))
4034, 39jca 302 . . . . . . . . 9 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → ((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})))
4127, 40impbida 568 . . . . . . . 8 (𝐵𝑉 → (((1st𝑥) = 𝑦𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
4214, 41syl5bbr 193 . . . . . . 7 (𝐵𝑉 → ((𝑥1st 𝑦𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
437, 42syl5bb 191 . . . . . 6 (𝐵𝑉 → (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
4443mobidv 2011 . . . . 5 (𝐵𝑉 → (∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ ∃*𝑥(𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
455, 44mpbiri 167 . . . 4 (𝐵𝑉 → ∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
4645alrimiv 1828 . . 3 (𝐵𝑉 → ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
47 funcnv2 5151 . . 3 (Fun (1st ↾ (𝐴 × {𝐵})) ↔ ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
4846, 47sylibr 133 . 2 (𝐵𝑉 → Fun (1st ↾ (𝐴 × {𝐵})))
49 dff1o3 5339 . 2 ((1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴 ↔ ((1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴 ∧ Fun (1st ↾ (𝐴 × {𝐵}))))
503, 48, 49sylanbrc 411 1 (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1312   = wceq 1314  wex 1451  wcel 1463  ∃*wmo 1976  Vcvv 2658  {csn 3495  cop 3498   class class class wbr 3897   × cxp 4505  ccnv 4506  cres 4509  Fun wfun 5085   Fn wfn 5086  ontowfo 5089  1-1-ontowf1o 5090  cfv 5091  1st c1st 6002  2nd c2nd 6003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-1st 6004  df-2nd 6005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator