| Step | Hyp | Ref
| Expression |
| 1 | | snmg 3740 |
. . 3
⊢ (𝐵 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐵}) |
| 2 | | fo1stresm 6219 |
. . 3
⊢
(∃𝑥 𝑥 ∈ {𝐵} → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto→𝐴) |
| 3 | 1, 2 | syl 14 |
. 2
⊢ (𝐵 ∈ 𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto→𝐴) |
| 4 | | moeq 2939 |
. . . . . 6
⊢
∃*𝑥 𝑥 = 〈𝑦, 𝐵〉 |
| 5 | 4 | moani 2115 |
. . . . 5
⊢
∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉) |
| 6 | | vex 2766 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 7 | 6 | brres 4952 |
. . . . . . 7
⊢ (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑥1st 𝑦 ∧ 𝑥 ∈ (𝐴 × {𝐵}))) |
| 8 | | fo1st 6215 |
. . . . . . . . . . 11
⊢
1st :V–onto→V |
| 9 | | fofn 5482 |
. . . . . . . . . . 11
⊢
(1st :V–onto→V → 1st Fn V) |
| 10 | 8, 9 | ax-mp 5 |
. . . . . . . . . 10
⊢
1st Fn V |
| 11 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 12 | | fnbrfvb 5601 |
. . . . . . . . . 10
⊢
((1st Fn V ∧ 𝑥 ∈ V) → ((1st
‘𝑥) = 𝑦 ↔ 𝑥1st 𝑦)) |
| 13 | 10, 11, 12 | mp2an 426 |
. . . . . . . . 9
⊢
((1st ‘𝑥) = 𝑦 ↔ 𝑥1st 𝑦) |
| 14 | 13 | anbi1i 458 |
. . . . . . . 8
⊢
(((1st ‘𝑥) = 𝑦 ∧ 𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑥1st 𝑦 ∧ 𝑥 ∈ (𝐴 × {𝐵}))) |
| 15 | | elxp7 6228 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐴 × {𝐵}) ↔ (𝑥 ∈ (V × V) ∧ ((1st
‘𝑥) ∈ 𝐴 ∧ (2nd
‘𝑥) ∈ {𝐵}))) |
| 16 | | eleq1 2259 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘𝑥) = 𝑦 → ((1st ‘𝑥) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 17 | 16 | biimpa 296 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘𝑥) = 𝑦 ∧ (1st ‘𝑥) ∈ 𝐴) → 𝑦 ∈ 𝐴) |
| 18 | 17 | adantrr 479 |
. . . . . . . . . . . . 13
⊢
(((1st ‘𝑥) = 𝑦 ∧ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ {𝐵})) → 𝑦 ∈ 𝐴) |
| 19 | 18 | adantrl 478 |
. . . . . . . . . . . 12
⊢
(((1st ‘𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st
‘𝑥) ∈ 𝐴 ∧ (2nd
‘𝑥) ∈ {𝐵}))) → 𝑦 ∈ 𝐴) |
| 20 | | elsni 3640 |
. . . . . . . . . . . . . 14
⊢
((2nd ‘𝑥) ∈ {𝐵} → (2nd ‘𝑥) = 𝐵) |
| 21 | | eqopi 6230 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (V × V) ∧
((1st ‘𝑥)
= 𝑦 ∧ (2nd
‘𝑥) = 𝐵)) → 𝑥 = 〈𝑦, 𝐵〉) |
| 22 | 21 | an12s 565 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (2nd
‘𝑥) = 𝐵)) → 𝑥 = 〈𝑦, 𝐵〉) |
| 23 | 20, 22 | sylanr2 405 |
. . . . . . . . . . . . 13
⊢
(((1st ‘𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ (2nd
‘𝑥) ∈ {𝐵})) → 𝑥 = 〈𝑦, 𝐵〉) |
| 24 | 23 | adantrrl 486 |
. . . . . . . . . . . 12
⊢
(((1st ‘𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st
‘𝑥) ∈ 𝐴 ∧ (2nd
‘𝑥) ∈ {𝐵}))) → 𝑥 = 〈𝑦, 𝐵〉) |
| 25 | 19, 24 | jca 306 |
. . . . . . . . . . 11
⊢
(((1st ‘𝑥) = 𝑦 ∧ (𝑥 ∈ (V × V) ∧ ((1st
‘𝑥) ∈ 𝐴 ∧ (2nd
‘𝑥) ∈ {𝐵}))) → (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) |
| 26 | 15, 25 | sylan2b 287 |
. . . . . . . . . 10
⊢
(((1st ‘𝑥) = 𝑦 ∧ 𝑥 ∈ (𝐴 × {𝐵})) → (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) |
| 27 | 26 | adantl 277 |
. . . . . . . . 9
⊢ ((𝐵 ∈ 𝑉 ∧ ((1st ‘𝑥) = 𝑦 ∧ 𝑥 ∈ (𝐴 × {𝐵}))) → (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) |
| 28 | | simprr 531 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → 𝑥 = 〈𝑦, 𝐵〉) |
| 29 | 28 | fveq2d 5562 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → (1st ‘𝑥) = (1st
‘〈𝑦, 𝐵〉)) |
| 30 | | simprl 529 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → 𝑦 ∈ 𝐴) |
| 31 | | simpl 109 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → 𝐵 ∈ 𝑉) |
| 32 | | op1stg 6208 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → (1st ‘〈𝑦, 𝐵〉) = 𝑦) |
| 33 | 30, 31, 32 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → (1st
‘〈𝑦, 𝐵〉) = 𝑦) |
| 34 | 29, 33 | eqtrd 2229 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → (1st ‘𝑥) = 𝑦) |
| 35 | | snidg 3651 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵}) |
| 36 | 35 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → 𝐵 ∈ {𝐵}) |
| 37 | | opelxpi 4695 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐴 ∧ 𝐵 ∈ {𝐵}) → 〈𝑦, 𝐵〉 ∈ (𝐴 × {𝐵})) |
| 38 | 30, 36, 37 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → 〈𝑦, 𝐵〉 ∈ (𝐴 × {𝐵})) |
| 39 | 28, 38 | eqeltrd 2273 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → 𝑥 ∈ (𝐴 × {𝐵})) |
| 40 | 34, 39 | jca 306 |
. . . . . . . . 9
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → ((1st
‘𝑥) = 𝑦 ∧ 𝑥 ∈ (𝐴 × {𝐵}))) |
| 41 | 27, 40 | impbida 596 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝑉 → (((1st ‘𝑥) = 𝑦 ∧ 𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉))) |
| 42 | 14, 41 | bitr3id 194 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑉 → ((𝑥1st 𝑦 ∧ 𝑥 ∈ (𝐴 × {𝐵})) ↔ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉))) |
| 43 | 7, 42 | bitrid 192 |
. . . . . 6
⊢ (𝐵 ∈ 𝑉 → (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉))) |
| 44 | 43 | mobidv 2081 |
. . . . 5
⊢ (𝐵 ∈ 𝑉 → (∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ ∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉))) |
| 45 | 5, 44 | mpbiri 168 |
. . . 4
⊢ (𝐵 ∈ 𝑉 → ∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦) |
| 46 | 45 | alrimiv 1888 |
. . 3
⊢ (𝐵 ∈ 𝑉 → ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦) |
| 47 | | funcnv2 5318 |
. . 3
⊢ (Fun
◡(1st ↾ (𝐴 × {𝐵})) ↔ ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦) |
| 48 | 46, 47 | sylibr 134 |
. 2
⊢ (𝐵 ∈ 𝑉 → Fun ◡(1st ↾ (𝐴 × {𝐵}))) |
| 49 | | dff1o3 5510 |
. 2
⊢
((1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto→𝐴 ↔ ((1st ↾
(𝐴 × {𝐵})):(𝐴 × {𝐵})–onto→𝐴 ∧ Fun ◡(1st ↾ (𝐴 × {𝐵})))) |
| 50 | 3, 48, 49 | sylanbrc 417 |
1
⊢ (𝐵 ∈ 𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto→𝐴) |