Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > alrimdh | GIF version |
Description: Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
alrimdh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
alrimdh.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
alrimdh.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
alrimdh | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimdh.2 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | alrimdh.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | alrimdh.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | alimdh 1460 | . 2 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
5 | 1, 4 | syl5 32 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1440 ax-gen 1442 |
This theorem is referenced by: nfimd 1578 alrimdv 1869 moexexdc 2103 |
Copyright terms: Public domain | W3C validator |