ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alcom GIF version

Theorem alcom 1478
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
alcom (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)

Proof of Theorem alcom
StepHypRef Expression
1 ax-7 1448 . 2 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
2 ax-7 1448 . 2 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
31, 2impbii 126 1 (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-7 1448
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  alrot3  1485  alrot4  1486  nfalt  1578  nfexd  1761  sbnf2  1981  sbcom2v  1985  sbalyz  1999  sbal1yz  2001  sbal2  2020  2eu4  2119  ralcomf  2638  gencbval  2786  unissb  3840  dfiin2g  3920  dftr5  4105  cotr  5011  cnvsym  5013  dffun2  5227  funcnveq  5280  fun11  5284
  Copyright terms: Public domain W3C validator