ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alcom GIF version

Theorem alcom 1502
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
alcom (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)

Proof of Theorem alcom
StepHypRef Expression
1 ax-7 1472 . 2 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
2 ax-7 1472 . 2 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
31, 2impbii 126 1 (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-7 1472
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  alrot3  1509  alrot4  1510  nfalt  1602  nfexd  1785  sbnf2  2010  sbcom2v  2014  sbalyz  2028  sbal1yz  2030  sbal2  2049  2eu4  2148  ralcomf  2668  gencbval  2823  unissb  3886  dfiin2g  3966  dftr5  4153  cotr  5073  cnvsym  5075  dffun2  5290  funcnveq  5346  fun11  5350
  Copyright terms: Public domain W3C validator