ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alcom GIF version

Theorem alcom 1524
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
alcom (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)

Proof of Theorem alcom
StepHypRef Expression
1 ax-7 1494 . 2 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
2 ax-7 1494 . 2 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
31, 2impbii 126 1 (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-7 1494
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  alrot3  1531  alrot4  1532  nfalt  1624  nfexd  1807  sbnf2  2032  sbcom2v  2036  sbalyz  2050  sbal1yz  2052  sbal2  2071  2eu4  2171  ralcomf  2692  gencbval  2849  unissb  3917  dfiin2g  3997  dftr5  4184  cotr  5109  cnvsym  5111  dffun2  5327  funcnveq  5383  fun11  5387
  Copyright terms: Public domain W3C validator