| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > alcom | GIF version | ||
| Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-7 1462 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-7 1462 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-7 1462 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: alrot3 1499 alrot4 1500 nfalt 1592 nfexd 1775 sbnf2 2000 sbcom2v 2004 sbalyz 2018 sbal1yz 2020 sbal2 2039 2eu4 2138 ralcomf 2658 gencbval 2812 unissb 3869 dfiin2g 3949 dftr5 4134 cotr 5051 cnvsym 5053 dffun2 5268 funcnveq 5321 fun11 5325 | 
| Copyright terms: Public domain | W3C validator |