ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alcom GIF version

Theorem alcom 1476
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
alcom (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)

Proof of Theorem alcom
StepHypRef Expression
1 ax-7 1446 . 2 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
2 ax-7 1446 . 2 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
31, 2impbii 126 1 (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-7 1446
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  alrot3  1483  alrot4  1484  nfalt  1576  nfexd  1759  sbnf2  1979  sbcom2v  1983  sbalyz  1997  sbal1yz  1999  sbal2  2018  2eu4  2117  ralcomf  2636  gencbval  2783  unissb  3835  dfiin2g  3915  dftr5  4099  cotr  5002  cnvsym  5004  dffun2  5218  funcnveq  5271  fun11  5275
  Copyright terms: Public domain W3C validator