| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alcom | GIF version | ||
| Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-7 1472 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-7 1472 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-7 1472 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: alrot3 1509 alrot4 1510 nfalt 1602 nfexd 1785 sbnf2 2010 sbcom2v 2014 sbalyz 2028 sbal1yz 2030 sbal2 2049 2eu4 2148 ralcomf 2668 gencbval 2823 unissb 3886 dfiin2g 3966 dftr5 4153 cotr 5073 cnvsym 5075 dffun2 5290 funcnveq 5346 fun11 5350 |
| Copyright terms: Public domain | W3C validator |