| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alcom | GIF version | ||
| Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-7 1470 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-7 1470 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-7 1470 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: alrot3 1507 alrot4 1508 nfalt 1600 nfexd 1783 sbnf2 2008 sbcom2v 2012 sbalyz 2026 sbal1yz 2028 sbal2 2047 2eu4 2146 ralcomf 2666 gencbval 2820 unissb 3879 dfiin2g 3959 dftr5 4144 cotr 5061 cnvsym 5063 dffun2 5278 funcnveq 5331 fun11 5335 |
| Copyright terms: Public domain | W3C validator |