ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alcom GIF version

Theorem alcom 1500
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
alcom (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)

Proof of Theorem alcom
StepHypRef Expression
1 ax-7 1470 . 2 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
2 ax-7 1470 . 2 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
31, 2impbii 126 1 (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-7 1470
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  alrot3  1507  alrot4  1508  nfalt  1600  nfexd  1783  sbnf2  2008  sbcom2v  2012  sbalyz  2026  sbal1yz  2028  sbal2  2047  2eu4  2146  ralcomf  2666  gencbval  2820  unissb  3879  dfiin2g  3959  dftr5  4144  cotr  5061  cnvsym  5063  dffun2  5278  funcnveq  5331  fun11  5335
  Copyright terms: Public domain W3C validator