![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alcom | GIF version |
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-7 1392 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
2 | ax-7 1392 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
3 | 1, 2 | impbii 125 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1297 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 106 ax-ia3 107 ax-7 1392 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: alrot3 1429 alrot4 1430 nfalt 1525 nfexd 1702 sbnf2 1917 sbcom2v 1921 sbalyz 1935 sbal1yz 1937 sbal2 1958 2eu4 2053 ralcomf 2550 gencbval 2689 unissb 3713 dfiin2g 3793 dftr5 3969 cotr 4856 cnvsym 4858 dffun2 5069 funcnveq 5122 fun11 5126 |
Copyright terms: Public domain | W3C validator |