| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alcom | GIF version | ||
| Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-7 1494 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | ax-7 1494 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-7 1494 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: alrot3 1531 alrot4 1532 nfalt 1624 nfexd 1807 sbnf2 2032 sbcom2v 2036 sbalyz 2050 sbal1yz 2052 sbal2 2071 2eu4 2171 ralcomf 2692 gencbval 2849 unissb 3917 dfiin2g 3997 dftr5 4184 cotr 5109 cnvsym 5111 dffun2 5327 funcnveq 5383 fun11 5387 |
| Copyright terms: Public domain | W3C validator |