ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alcom GIF version

Theorem alcom 1422
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
alcom (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)

Proof of Theorem alcom
StepHypRef Expression
1 ax-7 1392 . 2 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
2 ax-7 1392 . 2 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
31, 2impbii 125 1 (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1297
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia2 106  ax-ia3 107  ax-7 1392
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  alrot3  1429  alrot4  1430  nfalt  1525  nfexd  1702  sbnf2  1917  sbcom2v  1921  sbalyz  1935  sbal1yz  1937  sbal2  1958  2eu4  2053  ralcomf  2550  gencbval  2689  unissb  3713  dfiin2g  3793  dftr5  3969  cotr  4856  cnvsym  4858  dffun2  5069  funcnveq  5122  fun11  5126
  Copyright terms: Public domain W3C validator