Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > alcom | GIF version |
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-7 1446 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
2 | ax-7 1446 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
3 | 1, 2 | impbii 126 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-7 1446 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: alrot3 1483 alrot4 1484 nfalt 1576 nfexd 1759 sbnf2 1979 sbcom2v 1983 sbalyz 1997 sbal1yz 1999 sbal2 2018 2eu4 2117 ralcomf 2636 gencbval 2783 unissb 3835 dfiin2g 3915 dftr5 4099 cotr 5002 cnvsym 5004 dffun2 5218 funcnveq 5271 fun11 5275 |
Copyright terms: Public domain | W3C validator |