Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > alcom | GIF version |
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
alcom | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-7 1436 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | |
2 | ax-7 1436 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
3 | 1, 2 | impbii 125 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 ax-7 1436 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: alrot3 1473 alrot4 1474 nfalt 1566 nfexd 1749 sbnf2 1969 sbcom2v 1973 sbalyz 1987 sbal1yz 1989 sbal2 2008 2eu4 2107 ralcomf 2627 gencbval 2774 unissb 3819 dfiin2g 3899 dftr5 4083 cotr 4985 cnvsym 4987 dffun2 5198 funcnveq 5251 fun11 5255 |
Copyright terms: Public domain | W3C validator |