ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  albidh GIF version

Theorem albidh 1468
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
albidh.1 (𝜑 → ∀𝑥𝜑)
albidh.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
albidh (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))

Proof of Theorem albidh
StepHypRef Expression
1 albidh.1 . . 3 (𝜑 → ∀𝑥𝜑)
2 albidh.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2alrimih 1457 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
4 albi 1456 . 2 (∀𝑥(𝜓𝜒) → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
53, 4syl 14 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  nfbidf  1527  albid  1603  dral2  1719  ax11v2  1808  albidv  1812  equs5or  1818  sbal2  2008  eubidh  2020
  Copyright terms: Public domain W3C validator