Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > albidh | GIF version |
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
albidh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
albidh.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albidh | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albidh.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | albidh.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | alrimih 1462 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
4 | albi 1461 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) | |
5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nfbidf 1532 albid 1608 dral2 1724 ax11v2 1813 albidv 1817 equs5or 1823 sbal2 2013 eubidh 2025 |
Copyright terms: Public domain | W3C validator |