ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alrot3 GIF version

Theorem alrot3 1473
Description: Theorem *11.21 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
alrot3 (∀𝑥𝑦𝑧𝜑 ↔ ∀𝑦𝑧𝑥𝜑)

Proof of Theorem alrot3
StepHypRef Expression
1 alcom 1466 . 2 (∀𝑥𝑦𝑧𝜑 ↔ ∀𝑦𝑥𝑧𝜑)
2 alcom 1466 . . 3 (∀𝑥𝑧𝜑 ↔ ∀𝑧𝑥𝜑)
32albii 1458 . 2 (∀𝑦𝑥𝑧𝜑 ↔ ∀𝑦𝑧𝑥𝜑)
41, 3bitri 183 1 (∀𝑥𝑦𝑧𝜑 ↔ ∀𝑦𝑧𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  alrot4  1474  raliunxp  4745  dff13  5736
  Copyright terms: Public domain W3C validator