| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alrot3 | GIF version | ||
| Description: Theorem *11.21 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| alrot3 | ⊢ (∀𝑥∀𝑦∀𝑧𝜑 ↔ ∀𝑦∀𝑧∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom 1492 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧𝜑 ↔ ∀𝑦∀𝑥∀𝑧𝜑) | |
| 2 | alcom 1492 | . . 3 ⊢ (∀𝑥∀𝑧𝜑 ↔ ∀𝑧∀𝑥𝜑) | |
| 3 | 2 | albii 1484 | . 2 ⊢ (∀𝑦∀𝑥∀𝑧𝜑 ↔ ∀𝑦∀𝑧∀𝑥𝜑) |
| 4 | 1, 3 | bitri 184 | 1 ⊢ (∀𝑥∀𝑦∀𝑧𝜑 ↔ ∀𝑦∀𝑧∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: alrot4 1500 raliunxp 4807 dff13 5815 |
| Copyright terms: Public domain | W3C validator |