ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raliunxp GIF version

Theorem raliunxp 4745
Description: Write a double restricted quantification as one universal quantifier. In this version of ralxp 4747, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
ralxp.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
raliunxp (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝐵(𝑦)

Proof of Theorem raliunxp
StepHypRef Expression
1 eliunxp 4743 . . . . . 6 (𝑥 𝑦𝐴 ({𝑦} × 𝐵) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
21imbi1i 237 . . . . 5 ((𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
3 19.23vv 1872 . . . . 5 (∀𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
42, 3bitr4i 186 . . . 4 ((𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑) ↔ ∀𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
54albii 1458 . . 3 (∀𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑) ↔ ∀𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
6 alrot3 1473 . . . 4 (∀𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ∀𝑦𝑧𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑))
7 impexp 261 . . . . . . 7 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑦𝐴𝑧𝐵) → 𝜑)))
87albii 1458 . . . . . 6 (∀𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ∀𝑥(𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑦𝐴𝑧𝐵) → 𝜑)))
9 vex 2729 . . . . . . . 8 𝑦 ∈ V
10 vex 2729 . . . . . . . 8 𝑧 ∈ V
119, 10opex 4207 . . . . . . 7 𝑦, 𝑧⟩ ∈ V
12 ralxp.1 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
1312imbi2d 229 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (((𝑦𝐴𝑧𝐵) → 𝜑) ↔ ((𝑦𝐴𝑧𝐵) → 𝜓)))
1411, 13ceqsalv 2756 . . . . . 6 (∀𝑥(𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑦𝐴𝑧𝐵) → 𝜑)) ↔ ((𝑦𝐴𝑧𝐵) → 𝜓))
158, 14bitri 183 . . . . 5 (∀𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ((𝑦𝐴𝑧𝐵) → 𝜓))
16152albii 1459 . . . 4 (∀𝑦𝑧𝑥((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ∀𝑦𝑧((𝑦𝐴𝑧𝐵) → 𝜓))
176, 16bitri 183 . . 3 (∀𝑥𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) → 𝜑) ↔ ∀𝑦𝑧((𝑦𝐴𝑧𝐵) → 𝜓))
185, 17bitri 183 . 2 (∀𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑) ↔ ∀𝑦𝑧((𝑦𝐴𝑧𝐵) → 𝜓))
19 df-ral 2449 . 2 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑥(𝑥 𝑦𝐴 ({𝑦} × 𝐵) → 𝜑))
20 r2al 2485 . 2 (∀𝑦𝐴𝑧𝐵 𝜓 ↔ ∀𝑦𝑧((𝑦𝐴𝑧𝐵) → 𝜓))
2118, 19, 203bitr4i 211 1 (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341   = wceq 1343  wex 1480  wcel 2136  wral 2444  {csn 3576  cop 3579   ciun 3866   × cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-iun 3868  df-opab 4044  df-xp 4610  df-rel 4611
This theorem is referenced by:  ralxp  4747  fmpox  6168
  Copyright terms: Public domain W3C validator