| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.33 | GIF version | ||
| Description: Theorem 19.33 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.33 | ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 714 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 2 | 1 | alimi 1478 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝜑 ∨ 𝜓)) |
| 3 | olc 713 | . . 3 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 4 | 3 | alimi 1478 | . 2 ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 ∨ 𝜓)) |
| 5 | 2, 4 | jaoi 718 | 1 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-gen 1472 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.33b2 1652 |
| Copyright terms: Public domain | W3C validator |