ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff13 GIF version

Theorem dff13 5811
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 29-Oct-1996.)
Assertion
Ref Expression
dff13 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem dff13
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dff12 5458 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑧∃*𝑥 𝑥𝐹𝑧))
2 ffn 5403 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
3 vex 2763 . . . . . . . . . . . . . . 15 𝑥 ∈ V
4 vex 2763 . . . . . . . . . . . . . . 15 𝑧 ∈ V
53, 4breldm 4866 . . . . . . . . . . . . . 14 (𝑥𝐹𝑧𝑥 ∈ dom 𝐹)
6 fndm 5353 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76eleq2d 2263 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → (𝑥 ∈ dom 𝐹𝑥𝐴))
85, 7imbitrid 154 . . . . . . . . . . . . 13 (𝐹 Fn 𝐴 → (𝑥𝐹𝑧𝑥𝐴))
9 vex 2763 . . . . . . . . . . . . . . 15 𝑦 ∈ V
109, 4breldm 4866 . . . . . . . . . . . . . 14 (𝑦𝐹𝑧𝑦 ∈ dom 𝐹)
116eleq2d 2263 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → (𝑦 ∈ dom 𝐹𝑦𝐴))
1210, 11imbitrid 154 . . . . . . . . . . . . 13 (𝐹 Fn 𝐴 → (𝑦𝐹𝑧𝑦𝐴))
138, 12anim12d 335 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧𝑦𝐹𝑧) → (𝑥𝐴𝑦𝐴)))
1413pm4.71rd 394 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧𝑦𝐹𝑧) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝐹𝑧𝑦𝐹𝑧))))
15 eqcom 2195 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑧)
16 fnbrfvb 5597 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑧𝑥𝐹𝑧))
1715, 16bitrid 192 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑧 = (𝐹𝑥) ↔ 𝑥𝐹𝑧))
18 eqcom 2195 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑦) ↔ (𝐹𝑦) = 𝑧)
19 fnbrfvb 5597 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝐴𝑦𝐴) → ((𝐹𝑦) = 𝑧𝑦𝐹𝑧))
2018, 19bitrid 192 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴𝑦𝐴) → (𝑧 = (𝐹𝑦) ↔ 𝑦𝐹𝑧))
2117, 20bi2anan9 606 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐴𝑥𝐴) ∧ (𝐹 Fn 𝐴𝑦𝐴)) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) ↔ (𝑥𝐹𝑧𝑦𝐹𝑧)))
2221anandis 592 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) ↔ (𝑥𝐹𝑧𝑦𝐹𝑧)))
2322pm5.32da 452 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → (((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝐹𝑧𝑦𝐹𝑧))))
2414, 23bitr4d 191 . . . . . . . . . 10 (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧𝑦𝐹𝑧) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)))))
2524imbi1d 231 . . . . . . . . 9 (𝐹 Fn 𝐴 → (((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ (((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))) → 𝑥 = 𝑦)))
26 impexp 263 . . . . . . . . 9 ((((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))) → 𝑥 = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)))
2725, 26bitrdi 196 . . . . . . . 8 (𝐹 Fn 𝐴 → (((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))))
2827albidv 1835 . . . . . . 7 (𝐹 Fn 𝐴 → (∀𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑧((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))))
29 19.21v 1884 . . . . . . . 8 (∀𝑧((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) → ∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)))
30 19.23v 1894 . . . . . . . . . . 11 (∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦) ↔ (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))
31 funfvex 5571 . . . . . . . . . . . . . 14 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
3231funfni 5354 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ V)
33 eqvincg 2884 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ V → ((𝐹𝑥) = (𝐹𝑦) ↔ ∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))))
3432, 33syl 14 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = (𝐹𝑦) ↔ ∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))))
3534imbi1d 231 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑥𝐴) → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)))
3630, 35bitr4id 199 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑥𝐴) → (∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
3736adantrr 479 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
3837pm5.74da 443 . . . . . . . 8 (𝐹 Fn 𝐴 → (((𝑥𝐴𝑦𝐴) → ∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
3929, 38bitrid 192 . . . . . . 7 (𝐹 Fn 𝐴 → (∀𝑧((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
4028, 39bitrd 188 . . . . . 6 (𝐹 Fn 𝐴 → (∀𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
41402albidv 1878 . . . . 5 (𝐹 Fn 𝐴 → (∀𝑥𝑦𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
42 breq1 4032 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐹𝑧𝑦𝐹𝑧))
4342mo4 2103 . . . . . . 7 (∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝑦((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
4443albii 1481 . . . . . 6 (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑧𝑥𝑦((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
45 alrot3 1496 . . . . . 6 (∀𝑧𝑥𝑦((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
4644, 45bitri 184 . . . . 5 (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝑦𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
47 r2al 2513 . . . . 5 (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4841, 46, 473bitr4g 223 . . . 4 (𝐹 Fn 𝐴 → (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
492, 48syl 14 . . 3 (𝐹:𝐴𝐵 → (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
5049pm5.32i 454 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑧∃*𝑥 𝑥𝐹𝑧) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
511, 50bitri 184 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wex 1503  ∃*wmo 2043  wcel 2164  wral 2472  Vcvv 2760   class class class wbr 4029  dom cdm 4659   Fn wfn 5249  wf 5250  1-1wf1 5251  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fv 5262
This theorem is referenced by:  f1veqaeq  5812  dff13f  5813  dff1o6  5819  fcof1  5826  f1o2ndf1  6281  cc2lem  7326  cnref1o  9716  frec2uzf1od  10477  iseqf1olemqf1o  10577  reeff1  11843  crth  12362  eulerthlemh  12369  1arith  12505  nninfdclemf1  12609  xpsff1o  12932  ghmf1  13343  kerf1ghm  13344  znf1o  14139  ioocosf1o  14989  gausslemma2dlem1f1o  15176  lgseisenlem2  15187  peano4nninf  15496  exmidsbthrlem  15512
  Copyright terms: Public domain W3C validator