ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff13 GIF version

Theorem dff13 5836
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 29-Oct-1996.)
Assertion
Ref Expression
dff13 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem dff13
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dff12 5479 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑧∃*𝑥 𝑥𝐹𝑧))
2 ffn 5424 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
3 vex 2774 . . . . . . . . . . . . . . 15 𝑥 ∈ V
4 vex 2774 . . . . . . . . . . . . . . 15 𝑧 ∈ V
53, 4breldm 4881 . . . . . . . . . . . . . 14 (𝑥𝐹𝑧𝑥 ∈ dom 𝐹)
6 fndm 5372 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76eleq2d 2274 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → (𝑥 ∈ dom 𝐹𝑥𝐴))
85, 7imbitrid 154 . . . . . . . . . . . . 13 (𝐹 Fn 𝐴 → (𝑥𝐹𝑧𝑥𝐴))
9 vex 2774 . . . . . . . . . . . . . . 15 𝑦 ∈ V
109, 4breldm 4881 . . . . . . . . . . . . . 14 (𝑦𝐹𝑧𝑦 ∈ dom 𝐹)
116eleq2d 2274 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → (𝑦 ∈ dom 𝐹𝑦𝐴))
1210, 11imbitrid 154 . . . . . . . . . . . . 13 (𝐹 Fn 𝐴 → (𝑦𝐹𝑧𝑦𝐴))
138, 12anim12d 335 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧𝑦𝐹𝑧) → (𝑥𝐴𝑦𝐴)))
1413pm4.71rd 394 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧𝑦𝐹𝑧) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝐹𝑧𝑦𝐹𝑧))))
15 eqcom 2206 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑧)
16 fnbrfvb 5618 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑧𝑥𝐹𝑧))
1715, 16bitrid 192 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑧 = (𝐹𝑥) ↔ 𝑥𝐹𝑧))
18 eqcom 2206 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑦) ↔ (𝐹𝑦) = 𝑧)
19 fnbrfvb 5618 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝐴𝑦𝐴) → ((𝐹𝑦) = 𝑧𝑦𝐹𝑧))
2018, 19bitrid 192 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴𝑦𝐴) → (𝑧 = (𝐹𝑦) ↔ 𝑦𝐹𝑧))
2117, 20bi2anan9 606 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐴𝑥𝐴) ∧ (𝐹 Fn 𝐴𝑦𝐴)) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) ↔ (𝑥𝐹𝑧𝑦𝐹𝑧)))
2221anandis 592 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) ↔ (𝑥𝐹𝑧𝑦𝐹𝑧)))
2322pm5.32da 452 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → (((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝐹𝑧𝑦𝐹𝑧))))
2414, 23bitr4d 191 . . . . . . . . . 10 (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧𝑦𝐹𝑧) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)))))
2524imbi1d 231 . . . . . . . . 9 (𝐹 Fn 𝐴 → (((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ (((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))) → 𝑥 = 𝑦)))
26 impexp 263 . . . . . . . . 9 ((((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))) → 𝑥 = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)))
2725, 26bitrdi 196 . . . . . . . 8 (𝐹 Fn 𝐴 → (((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))))
2827albidv 1846 . . . . . . 7 (𝐹 Fn 𝐴 → (∀𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑧((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))))
29 19.21v 1895 . . . . . . . 8 (∀𝑧((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) → ∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)))
30 19.23v 1905 . . . . . . . . . . 11 (∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦) ↔ (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))
31 funfvex 5592 . . . . . . . . . . . . . 14 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
3231funfni 5375 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ V)
33 eqvincg 2896 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ V → ((𝐹𝑥) = (𝐹𝑦) ↔ ∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))))
3432, 33syl 14 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = (𝐹𝑦) ↔ ∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))))
3534imbi1d 231 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑥𝐴) → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)))
3630, 35bitr4id 199 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑥𝐴) → (∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
3736adantrr 479 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
3837pm5.74da 443 . . . . . . . 8 (𝐹 Fn 𝐴 → (((𝑥𝐴𝑦𝐴) → ∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
3929, 38bitrid 192 . . . . . . 7 (𝐹 Fn 𝐴 → (∀𝑧((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
4028, 39bitrd 188 . . . . . 6 (𝐹 Fn 𝐴 → (∀𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
41402albidv 1889 . . . . 5 (𝐹 Fn 𝐴 → (∀𝑥𝑦𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
42 breq1 4046 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐹𝑧𝑦𝐹𝑧))
4342mo4 2114 . . . . . . 7 (∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝑦((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
4443albii 1492 . . . . . 6 (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑧𝑥𝑦((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
45 alrot3 1507 . . . . . 6 (∀𝑧𝑥𝑦((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
4644, 45bitri 184 . . . . 5 (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝑦𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
47 r2al 2524 . . . . 5 (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4841, 46, 473bitr4g 223 . . . 4 (𝐹 Fn 𝐴 → (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
492, 48syl 14 . . 3 (𝐹:𝐴𝐵 → (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
5049pm5.32i 454 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑧∃*𝑥 𝑥𝐹𝑧) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
511, 50bitri 184 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1370   = wceq 1372  wex 1514  ∃*wmo 2054  wcel 2175  wral 2483  Vcvv 2771   class class class wbr 4043  dom cdm 4674   Fn wfn 5265  wf 5266  1-1wf1 5267  cfv 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fv 5278
This theorem is referenced by:  f1veqaeq  5837  dff13f  5838  dff1o6  5844  fcof1  5851  f1o2ndf1  6313  cc2lem  7377  cnref1o  9771  frec2uzf1od  10549  iseqf1olemqf1o  10649  reeff1  11953  crth  12488  eulerthlemh  12495  1arith  12632  nninfdclemf1  12765  xpsff1o  13123  ghmf1  13551  kerf1ghm  13552  znf1o  14355  ioocosf1o  15268  mpodvdsmulf1o  15404  gausslemma2dlem1f1o  15479  lgseisenlem2  15490  2lgslem1b  15508  peano4nninf  15876  exmidsbthrlem  15894
  Copyright terms: Public domain W3C validator