Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anabsi5 | GIF version |
Description: Absorption of antecedent into conjunction. (Contributed by NM, 11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
Ref | Expression |
---|---|
anabsi5.1 | ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) |
Ref | Expression |
---|---|
anabsi5 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabsi5.1 | . . 3 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
2 | 1 | imp 123 | . 2 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) → 𝜒) |
3 | 2 | anabss5 573 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: anabsi6 575 anabsi8 577 3anidm12 1290 equsexd 1722 rspce 2829 phplem3g 6834 ltexprlemrl 7572 ltexprlemru 7574 dvdssq 11986 |
Copyright terms: Public domain | W3C validator |