![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspce | GIF version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
rspc.1 | ⊢ Ⅎ𝑥𝜓 |
rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspce | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2319 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1528 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
3 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
4 | 2, 3 | nfan 1565 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 ∧ 𝜓) |
5 | eleq1 2240 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
6 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 5, 6 | anbi12d 473 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
8 | 1, 4, 7 | spcegf 2822 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
9 | 8 | anabsi5 579 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) |
10 | df-rex 2461 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
11 | 9, 10 | sylibr 134 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 Ⅎwnf 1460 ∃wex 1492 ∈ wcel 2148 ∃wrex 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 |
This theorem is referenced by: rspcev 2843 bezoutlemmain 12001 |
Copyright terms: Public domain | W3C validator |