![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > phplem3g | GIF version |
Description: A natural number is equinumerous to its successor minus any element of the successor. Version of phplem3 6857 with unnecessary hypotheses removed. (Contributed by Jim Kingdon, 1-Sep-2021.) |
Ref | Expression |
---|---|
phplem3g | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2240 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝑏 ∈ suc 𝐴 ↔ 𝐵 ∈ suc 𝐴)) | |
2 | 1 | anbi2d 464 | . . . 4 ⊢ (𝑏 = 𝐵 → ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴))) |
3 | sneq 3605 | . . . . . 6 ⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) | |
4 | 3 | difeq2d 3255 | . . . . 5 ⊢ (𝑏 = 𝐵 → (suc 𝐴 ∖ {𝑏}) = (suc 𝐴 ∖ {𝐵})) |
5 | 4 | breq2d 4017 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝐴 ≈ (suc 𝐴 ∖ {𝑏}) ↔ 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))) |
6 | 2, 5 | imbi12d 234 | . . 3 ⊢ (𝑏 = 𝐵 → (((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏})) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})))) |
7 | eleq1 2240 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑎 ∈ ω ↔ 𝐴 ∈ ω)) | |
8 | suceq 4404 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴) | |
9 | 8 | eleq2d 2247 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑏 ∈ suc 𝑎 ↔ 𝑏 ∈ suc 𝐴)) |
10 | 7, 9 | anbi12d 473 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) ↔ (𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴))) |
11 | id 19 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
12 | 8 | difeq1d 3254 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (suc 𝑎 ∖ {𝑏}) = (suc 𝐴 ∖ {𝑏})) |
13 | 11, 12 | breq12d 4018 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ≈ (suc 𝑎 ∖ {𝑏}) ↔ 𝐴 ≈ (suc 𝐴 ∖ {𝑏}))) |
14 | 10, 13 | imbi12d 234 | . . . . 5 ⊢ (𝑎 = 𝐴 → (((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) → 𝑎 ≈ (suc 𝑎 ∖ {𝑏})) ↔ ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏})))) |
15 | vex 2742 | . . . . . 6 ⊢ 𝑎 ∈ V | |
16 | vex 2742 | . . . . . 6 ⊢ 𝑏 ∈ V | |
17 | 15, 16 | phplem3 6857 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) → 𝑎 ≈ (suc 𝑎 ∖ {𝑏})) |
18 | 14, 17 | vtoclg 2799 | . . . 4 ⊢ (𝐴 ∈ ω → ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏}))) |
19 | 18 | anabsi5 579 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏})) |
20 | 6, 19 | vtoclg 2799 | . 2 ⊢ (𝐵 ∈ suc 𝐴 → ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))) |
21 | 20 | anabsi7 581 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∖ cdif 3128 {csn 3594 class class class wbr 4005 suc csuc 4367 ωcom 4591 ≈ cen 6741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-en 6744 |
This theorem is referenced by: phplem4dom 6865 phpm 6868 phplem4on 6870 |
Copyright terms: Public domain | W3C validator |