ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem3g GIF version

Theorem phplem3g 6750
Description: A natural number is equinumerous to its successor minus any element of the successor. Version of phplem3 6748 with unnecessary hypotheses removed. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
phplem3g ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))

Proof of Theorem phplem3g
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2202 . . . . 5 (𝑏 = 𝐵 → (𝑏 ∈ suc 𝐴𝐵 ∈ suc 𝐴))
21anbi2d 459 . . . 4 (𝑏 = 𝐵 → ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴)))
3 sneq 3538 . . . . . 6 (𝑏 = 𝐵 → {𝑏} = {𝐵})
43difeq2d 3194 . . . . 5 (𝑏 = 𝐵 → (suc 𝐴 ∖ {𝑏}) = (suc 𝐴 ∖ {𝐵}))
54breq2d 3941 . . . 4 (𝑏 = 𝐵 → (𝐴 ≈ (suc 𝐴 ∖ {𝑏}) ↔ 𝐴 ≈ (suc 𝐴 ∖ {𝐵})))
62, 5imbi12d 233 . . 3 (𝑏 = 𝐵 → (((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏})) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))))
7 eleq1 2202 . . . . . . 7 (𝑎 = 𝐴 → (𝑎 ∈ ω ↔ 𝐴 ∈ ω))
8 suceq 4324 . . . . . . . 8 (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴)
98eleq2d 2209 . . . . . . 7 (𝑎 = 𝐴 → (𝑏 ∈ suc 𝑎𝑏 ∈ suc 𝐴))
107, 9anbi12d 464 . . . . . 6 (𝑎 = 𝐴 → ((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) ↔ (𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴)))
11 id 19 . . . . . . 7 (𝑎 = 𝐴𝑎 = 𝐴)
128difeq1d 3193 . . . . . . 7 (𝑎 = 𝐴 → (suc 𝑎 ∖ {𝑏}) = (suc 𝐴 ∖ {𝑏}))
1311, 12breq12d 3942 . . . . . 6 (𝑎 = 𝐴 → (𝑎 ≈ (suc 𝑎 ∖ {𝑏}) ↔ 𝐴 ≈ (suc 𝐴 ∖ {𝑏})))
1410, 13imbi12d 233 . . . . 5 (𝑎 = 𝐴 → (((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) → 𝑎 ≈ (suc 𝑎 ∖ {𝑏})) ↔ ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏}))))
15 vex 2689 . . . . . 6 𝑎 ∈ V
16 vex 2689 . . . . . 6 𝑏 ∈ V
1715, 16phplem3 6748 . . . . 5 ((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) → 𝑎 ≈ (suc 𝑎 ∖ {𝑏}))
1814, 17vtoclg 2746 . . . 4 (𝐴 ∈ ω → ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏})))
1918anabsi5 568 . . 3 ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏}))
206, 19vtoclg 2746 . 2 (𝐵 ∈ suc 𝐴 → ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})))
2120anabsi7 570 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  cdif 3068  {csn 3527   class class class wbr 3929  suc csuc 4287  ωcom 4504  cen 6632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-en 6635
This theorem is referenced by:  phplem4dom  6756  phpm  6759  phplem4on  6761
  Copyright terms: Public domain W3C validator