![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > phplem3g | GIF version |
Description: A natural number is equinumerous to its successor minus any element of the successor. Version of phplem3 6912 with unnecessary hypotheses removed. (Contributed by Jim Kingdon, 1-Sep-2021.) |
Ref | Expression |
---|---|
phplem3g | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2256 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝑏 ∈ suc 𝐴 ↔ 𝐵 ∈ suc 𝐴)) | |
2 | 1 | anbi2d 464 | . . . 4 ⊢ (𝑏 = 𝐵 → ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴))) |
3 | sneq 3630 | . . . . . 6 ⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) | |
4 | 3 | difeq2d 3278 | . . . . 5 ⊢ (𝑏 = 𝐵 → (suc 𝐴 ∖ {𝑏}) = (suc 𝐴 ∖ {𝐵})) |
5 | 4 | breq2d 4042 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝐴 ≈ (suc 𝐴 ∖ {𝑏}) ↔ 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))) |
6 | 2, 5 | imbi12d 234 | . . 3 ⊢ (𝑏 = 𝐵 → (((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏})) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})))) |
7 | eleq1 2256 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑎 ∈ ω ↔ 𝐴 ∈ ω)) | |
8 | suceq 4434 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴) | |
9 | 8 | eleq2d 2263 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑏 ∈ suc 𝑎 ↔ 𝑏 ∈ suc 𝐴)) |
10 | 7, 9 | anbi12d 473 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) ↔ (𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴))) |
11 | id 19 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
12 | 8 | difeq1d 3277 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (suc 𝑎 ∖ {𝑏}) = (suc 𝐴 ∖ {𝑏})) |
13 | 11, 12 | breq12d 4043 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ≈ (suc 𝑎 ∖ {𝑏}) ↔ 𝐴 ≈ (suc 𝐴 ∖ {𝑏}))) |
14 | 10, 13 | imbi12d 234 | . . . . 5 ⊢ (𝑎 = 𝐴 → (((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) → 𝑎 ≈ (suc 𝑎 ∖ {𝑏})) ↔ ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏})))) |
15 | vex 2763 | . . . . . 6 ⊢ 𝑎 ∈ V | |
16 | vex 2763 | . . . . . 6 ⊢ 𝑏 ∈ V | |
17 | 15, 16 | phplem3 6912 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) → 𝑎 ≈ (suc 𝑎 ∖ {𝑏})) |
18 | 14, 17 | vtoclg 2821 | . . . 4 ⊢ (𝐴 ∈ ω → ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏}))) |
19 | 18 | anabsi5 579 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏})) |
20 | 6, 19 | vtoclg 2821 | . 2 ⊢ (𝐵 ∈ suc 𝐴 → ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))) |
21 | 20 | anabsi7 581 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∖ cdif 3151 {csn 3619 class class class wbr 4030 suc csuc 4397 ωcom 4623 ≈ cen 6794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-en 6797 |
This theorem is referenced by: phplem4dom 6920 phpm 6923 phplem4on 6925 |
Copyright terms: Public domain | W3C validator |