Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > phplem3g | GIF version |
Description: A natural number is equinumerous to its successor minus any element of the successor. Version of phplem3 6820 with unnecessary hypotheses removed. (Contributed by Jim Kingdon, 1-Sep-2021.) |
Ref | Expression |
---|---|
phplem3g | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2229 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝑏 ∈ suc 𝐴 ↔ 𝐵 ∈ suc 𝐴)) | |
2 | 1 | anbi2d 460 | . . . 4 ⊢ (𝑏 = 𝐵 → ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴))) |
3 | sneq 3587 | . . . . . 6 ⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) | |
4 | 3 | difeq2d 3240 | . . . . 5 ⊢ (𝑏 = 𝐵 → (suc 𝐴 ∖ {𝑏}) = (suc 𝐴 ∖ {𝐵})) |
5 | 4 | breq2d 3994 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝐴 ≈ (suc 𝐴 ∖ {𝑏}) ↔ 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))) |
6 | 2, 5 | imbi12d 233 | . . 3 ⊢ (𝑏 = 𝐵 → (((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏})) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})))) |
7 | eleq1 2229 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑎 ∈ ω ↔ 𝐴 ∈ ω)) | |
8 | suceq 4380 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴) | |
9 | 8 | eleq2d 2236 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑏 ∈ suc 𝑎 ↔ 𝑏 ∈ suc 𝐴)) |
10 | 7, 9 | anbi12d 465 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) ↔ (𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴))) |
11 | id 19 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
12 | 8 | difeq1d 3239 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (suc 𝑎 ∖ {𝑏}) = (suc 𝐴 ∖ {𝑏})) |
13 | 11, 12 | breq12d 3995 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ≈ (suc 𝑎 ∖ {𝑏}) ↔ 𝐴 ≈ (suc 𝐴 ∖ {𝑏}))) |
14 | 10, 13 | imbi12d 233 | . . . . 5 ⊢ (𝑎 = 𝐴 → (((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) → 𝑎 ≈ (suc 𝑎 ∖ {𝑏})) ↔ ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏})))) |
15 | vex 2729 | . . . . . 6 ⊢ 𝑎 ∈ V | |
16 | vex 2729 | . . . . . 6 ⊢ 𝑏 ∈ V | |
17 | 15, 16 | phplem3 6820 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) → 𝑎 ≈ (suc 𝑎 ∖ {𝑏})) |
18 | 14, 17 | vtoclg 2786 | . . . 4 ⊢ (𝐴 ∈ ω → ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏}))) |
19 | 18 | anabsi5 569 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏})) |
20 | 6, 19 | vtoclg 2786 | . 2 ⊢ (𝐵 ∈ suc 𝐴 → ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))) |
21 | 20 | anabsi7 571 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∖ cdif 3113 {csn 3576 class class class wbr 3982 suc csuc 4343 ωcom 4567 ≈ cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-en 6707 |
This theorem is referenced by: phplem4dom 6828 phpm 6831 phplem4on 6833 |
Copyright terms: Public domain | W3C validator |