| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > phplem3g | GIF version | ||
| Description: A natural number is equinumerous to its successor minus any element of the successor. Version of phplem3 7003 with unnecessary hypotheses removed. (Contributed by Jim Kingdon, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| phplem3g | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2292 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝑏 ∈ suc 𝐴 ↔ 𝐵 ∈ suc 𝐴)) | |
| 2 | 1 | anbi2d 464 | . . . 4 ⊢ (𝑏 = 𝐵 → ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴))) |
| 3 | sneq 3677 | . . . . . 6 ⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) | |
| 4 | 3 | difeq2d 3322 | . . . . 5 ⊢ (𝑏 = 𝐵 → (suc 𝐴 ∖ {𝑏}) = (suc 𝐴 ∖ {𝐵})) |
| 5 | 4 | breq2d 4094 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝐴 ≈ (suc 𝐴 ∖ {𝑏}) ↔ 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))) |
| 6 | 2, 5 | imbi12d 234 | . . 3 ⊢ (𝑏 = 𝐵 → (((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏})) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})))) |
| 7 | eleq1 2292 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑎 ∈ ω ↔ 𝐴 ∈ ω)) | |
| 8 | suceq 4490 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴) | |
| 9 | 8 | eleq2d 2299 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑏 ∈ suc 𝑎 ↔ 𝑏 ∈ suc 𝐴)) |
| 10 | 7, 9 | anbi12d 473 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) ↔ (𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴))) |
| 11 | id 19 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
| 12 | 8 | difeq1d 3321 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (suc 𝑎 ∖ {𝑏}) = (suc 𝐴 ∖ {𝑏})) |
| 13 | 11, 12 | breq12d 4095 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ≈ (suc 𝑎 ∖ {𝑏}) ↔ 𝐴 ≈ (suc 𝐴 ∖ {𝑏}))) |
| 14 | 10, 13 | imbi12d 234 | . . . . 5 ⊢ (𝑎 = 𝐴 → (((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) → 𝑎 ≈ (suc 𝑎 ∖ {𝑏})) ↔ ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏})))) |
| 15 | vex 2802 | . . . . . 6 ⊢ 𝑎 ∈ V | |
| 16 | vex 2802 | . . . . . 6 ⊢ 𝑏 ∈ V | |
| 17 | 15, 16 | phplem3 7003 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ suc 𝑎) → 𝑎 ≈ (suc 𝑎 ∖ {𝑏})) |
| 18 | 14, 17 | vtoclg 2861 | . . . 4 ⊢ (𝐴 ∈ ω → ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏}))) |
| 19 | 18 | anabsi5 579 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝑏 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝑏})) |
| 20 | 6, 19 | vtoclg 2861 | . 2 ⊢ (𝐵 ∈ suc 𝐴 → ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))) |
| 21 | 20 | anabsi7 581 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∖ cdif 3194 {csn 3666 class class class wbr 4082 suc csuc 4453 ωcom 4679 ≈ cen 6875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-en 6878 |
| This theorem is referenced by: phplem4dom 7011 phpm 7015 phplem4on 7017 |
| Copyright terms: Public domain | W3C validator |