ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdssq GIF version

Theorem dvdssq 12171
Description: Two numbers are divisible iff their squares are. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dvdssq ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))

Proof of Theorem dvdssq
StepHypRef Expression
1 0z 9331 . . . 4 0 ∈ ℤ
2 zdceq 9395 . . . 4 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0)
31, 2mpan2 425 . . 3 (𝑀 ∈ ℤ → DECID 𝑀 = 0)
4 exmiddc 837 . . 3 (DECID 𝑀 = 0 → (𝑀 = 0 ∨ ¬ 𝑀 = 0))
5 0dvds 11957 . . . . . . . 8 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
6 zcn 9325 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 sqeq0 10676 . . . . . . . . 9 (𝑁 ∈ ℂ → ((𝑁↑2) = 0 ↔ 𝑁 = 0))
86, 7syl 14 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝑁↑2) = 0 ↔ 𝑁 = 0))
95, 8bitr4d 191 . . . . . . 7 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ (𝑁↑2) = 0))
10 zsqcl 10684 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℤ)
11 0dvds 11957 . . . . . . . 8 ((𝑁↑2) ∈ ℤ → (0 ∥ (𝑁↑2) ↔ (𝑁↑2) = 0))
1210, 11syl 14 . . . . . . 7 (𝑁 ∈ ℤ → (0 ∥ (𝑁↑2) ↔ (𝑁↑2) = 0))
139, 12bitr4d 191 . . . . . 6 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 0 ∥ (𝑁↑2)))
1413adantl 277 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ 0 ∥ (𝑁↑2)))
15 breq1 4033 . . . . . 6 (𝑀 = 0 → (𝑀𝑁 ↔ 0 ∥ 𝑁))
16 sq0i 10705 . . . . . . 7 (𝑀 = 0 → (𝑀↑2) = 0)
1716breq1d 4040 . . . . . 6 (𝑀 = 0 → ((𝑀↑2) ∥ (𝑁↑2) ↔ 0 ∥ (𝑁↑2)))
1815, 17bibi12d 235 . . . . 5 (𝑀 = 0 → ((𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)) ↔ (0 ∥ 𝑁 ↔ 0 ∥ (𝑁↑2))))
1914, 18imbitrrid 156 . . . 4 (𝑀 = 0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))))
20 df-ne 2365 . . . . 5 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
21 nnabscl 11247 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
22 zdceq 9395 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
231, 22mpan2 425 . . . . . . . . . . 11 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
24 exmiddc 837 . . . . . . . . . . 11 (DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
25 nnz 9339 . . . . . . . . . . . . . . 15 ((abs‘𝑀) ∈ ℕ → (abs‘𝑀) ∈ ℤ)
26 dvds0 11952 . . . . . . . . . . . . . . . 16 ((abs‘𝑀) ∈ ℤ → (abs‘𝑀) ∥ 0)
27 zsqcl 10684 . . . . . . . . . . . . . . . . 17 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀)↑2) ∈ ℤ)
28 dvds0 11952 . . . . . . . . . . . . . . . . 17 (((abs‘𝑀)↑2) ∈ ℤ → ((abs‘𝑀)↑2) ∥ 0)
2927, 28syl 14 . . . . . . . . . . . . . . . 16 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀)↑2) ∥ 0)
3026, 292thd 175 . . . . . . . . . . . . . . 15 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0))
3125, 30syl 14 . . . . . . . . . . . . . 14 ((abs‘𝑀) ∈ ℕ → ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0))
3231adantr 276 . . . . . . . . . . . . 13 (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0))
33 breq2 4034 . . . . . . . . . . . . . 14 (𝑁 = 0 → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ 0))
34 sq0i 10705 . . . . . . . . . . . . . . 15 (𝑁 = 0 → (𝑁↑2) = 0)
3534breq2d 4042 . . . . . . . . . . . . . 14 (𝑁 = 0 → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ 0))
3633, 35bibi12d 235 . . . . . . . . . . . . 13 (𝑁 = 0 → (((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)) ↔ ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0)))
3732, 36imbitrrid 156 . . . . . . . . . . . 12 (𝑁 = 0 → (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2))))
38 df-ne 2365 . . . . . . . . . . . . 13 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
39 nnabscl 11247 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
40 dvdssqlem 12170 . . . . . . . . . . . . . . . . 17 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → ((abs‘𝑀) ∥ (abs‘𝑁) ↔ ((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2)))
4139, 40sylan2 286 . . . . . . . . . . . . . . . 16 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∥ (abs‘𝑁) ↔ ((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2)))
42 simpl 109 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ)
43 dvdsabsb 11956 . . . . . . . . . . . . . . . . 17 (((abs‘𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
4425, 42, 43syl2an 289 . . . . . . . . . . . . . . . 16 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
45 nnsqcl 10683 . . . . . . . . . . . . . . . . . . 19 ((abs‘𝑀) ∈ ℕ → ((abs‘𝑀)↑2) ∈ ℕ)
4645nnzd 9441 . . . . . . . . . . . . . . . . . 18 ((abs‘𝑀) ∈ ℕ → ((abs‘𝑀)↑2) ∈ ℤ)
4710adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑁↑2) ∈ ℤ)
48 dvdsabsb 11956 . . . . . . . . . . . . . . . . . 18 ((((abs‘𝑀)↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ) → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
4946, 47, 48syl2an 289 . . . . . . . . . . . . . . . . 17 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
506adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℂ)
51 abssq 11228 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℂ → ((abs‘𝑁)↑2) = (abs‘(𝑁↑2)))
5250, 51syl 14 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((abs‘𝑁)↑2) = (abs‘(𝑁↑2)))
5352breq2d 4042 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
5453adantl 277 . . . . . . . . . . . . . . . . 17 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
5549, 54bitr4d 191 . . . . . . . . . . . . . . . 16 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2)))
5641, 44, 553bitr4d 220 . . . . . . . . . . . . . . 15 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
5756anassrs 400 . . . . . . . . . . . . . 14 ((((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
5857expcom 116 . . . . . . . . . . . . 13 (𝑁 ≠ 0 → (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2))))
5938, 58sylbir 135 . . . . . . . . . . . 12 𝑁 = 0 → (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2))))
6037, 59jaoi 717 . . . . . . . . . . 11 ((𝑁 = 0 ∨ ¬ 𝑁 = 0) → (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2))))
6123, 24, 603syl 17 . . . . . . . . . 10 (𝑁 ∈ ℤ → (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2))))
6261anabsi7 581 . . . . . . . . 9 (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
6321, 62sylan 283 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
64 absdvdsb 11955 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ 𝑁))
6564adantlr 477 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ 𝑁))
66 zsqcl 10684 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
6766adantr 276 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀↑2) ∈ ℤ)
68 absdvdsb 11955 . . . . . . . . . 10 (((𝑀↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ) → ((𝑀↑2) ∥ (𝑁↑2) ↔ (abs‘(𝑀↑2)) ∥ (𝑁↑2)))
6967, 10, 68syl2an 289 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝑀↑2) ∥ (𝑁↑2) ↔ (abs‘(𝑀↑2)) ∥ (𝑁↑2)))
70 zcn 9325 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
71 abssq 11228 . . . . . . . . . . . . . 14 (𝑀 ∈ ℂ → ((abs‘𝑀)↑2) = (abs‘(𝑀↑2)))
7270, 71syl 14 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → ((abs‘𝑀)↑2) = (abs‘(𝑀↑2)))
7372eqcomd 2199 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (abs‘(𝑀↑2)) = ((abs‘𝑀)↑2))
7473adantr 276 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘(𝑀↑2)) = ((abs‘𝑀)↑2))
7574breq1d 4040 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ((abs‘(𝑀↑2)) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
7675adantr 276 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((abs‘(𝑀↑2)) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
7769, 76bitrd 188 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝑀↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
7863, 65, 773bitr4d 220 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
7978an32s 568 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
8079expcom 116 . . . . 5 (𝑀 ≠ 0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))))
8120, 80sylbir 135 . . . 4 𝑀 = 0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))))
8219, 81jaoi 717 . . 3 ((𝑀 = 0 ∨ ¬ 𝑀 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))))
833, 4, 823syl 17 . 2 (𝑀 ∈ ℤ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))))
8483anabsi5 579 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364   class class class wbr 4030  cfv 5255  (class class class)co 5919  cc 7872  0cc0 7874  cn 8984  2c2 9035  cz 9320  cexp 10612  abscabs 11144  cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-dvds 11934  df-gcd 12083
This theorem is referenced by:  pythagtriplem19  12423  4sqlem9  12527  4sqlem10  12528  lgsdir  15192  2sqlem8a  15279
  Copyright terms: Public domain W3C validator