ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdssq GIF version

Theorem dvdssq 12467
Description: Two numbers are divisible iff their squares are. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dvdssq ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))

Proof of Theorem dvdssq
StepHypRef Expression
1 0z 9418 . . . 4 0 ∈ ℤ
2 zdceq 9483 . . . 4 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0)
31, 2mpan2 425 . . 3 (𝑀 ∈ ℤ → DECID 𝑀 = 0)
4 exmiddc 838 . . 3 (DECID 𝑀 = 0 → (𝑀 = 0 ∨ ¬ 𝑀 = 0))
5 0dvds 12237 . . . . . . . 8 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
6 zcn 9412 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 sqeq0 10784 . . . . . . . . 9 (𝑁 ∈ ℂ → ((𝑁↑2) = 0 ↔ 𝑁 = 0))
86, 7syl 14 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝑁↑2) = 0 ↔ 𝑁 = 0))
95, 8bitr4d 191 . . . . . . 7 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ (𝑁↑2) = 0))
10 zsqcl 10792 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℤ)
11 0dvds 12237 . . . . . . . 8 ((𝑁↑2) ∈ ℤ → (0 ∥ (𝑁↑2) ↔ (𝑁↑2) = 0))
1210, 11syl 14 . . . . . . 7 (𝑁 ∈ ℤ → (0 ∥ (𝑁↑2) ↔ (𝑁↑2) = 0))
139, 12bitr4d 191 . . . . . 6 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 0 ∥ (𝑁↑2)))
1413adantl 277 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ 0 ∥ (𝑁↑2)))
15 breq1 4062 . . . . . 6 (𝑀 = 0 → (𝑀𝑁 ↔ 0 ∥ 𝑁))
16 sq0i 10813 . . . . . . 7 (𝑀 = 0 → (𝑀↑2) = 0)
1716breq1d 4069 . . . . . 6 (𝑀 = 0 → ((𝑀↑2) ∥ (𝑁↑2) ↔ 0 ∥ (𝑁↑2)))
1815, 17bibi12d 235 . . . . 5 (𝑀 = 0 → ((𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)) ↔ (0 ∥ 𝑁 ↔ 0 ∥ (𝑁↑2))))
1914, 18imbitrrid 156 . . . 4 (𝑀 = 0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))))
20 df-ne 2379 . . . . 5 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
21 nnabscl 11526 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
22 zdceq 9483 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
231, 22mpan2 425 . . . . . . . . . . 11 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
24 exmiddc 838 . . . . . . . . . . 11 (DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
25 nnz 9426 . . . . . . . . . . . . . . 15 ((abs‘𝑀) ∈ ℕ → (abs‘𝑀) ∈ ℤ)
26 dvds0 12232 . . . . . . . . . . . . . . . 16 ((abs‘𝑀) ∈ ℤ → (abs‘𝑀) ∥ 0)
27 zsqcl 10792 . . . . . . . . . . . . . . . . 17 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀)↑2) ∈ ℤ)
28 dvds0 12232 . . . . . . . . . . . . . . . . 17 (((abs‘𝑀)↑2) ∈ ℤ → ((abs‘𝑀)↑2) ∥ 0)
2927, 28syl 14 . . . . . . . . . . . . . . . 16 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀)↑2) ∥ 0)
3026, 292thd 175 . . . . . . . . . . . . . . 15 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0))
3125, 30syl 14 . . . . . . . . . . . . . 14 ((abs‘𝑀) ∈ ℕ → ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0))
3231adantr 276 . . . . . . . . . . . . 13 (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0))
33 breq2 4063 . . . . . . . . . . . . . 14 (𝑁 = 0 → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ 0))
34 sq0i 10813 . . . . . . . . . . . . . . 15 (𝑁 = 0 → (𝑁↑2) = 0)
3534breq2d 4071 . . . . . . . . . . . . . 14 (𝑁 = 0 → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ 0))
3633, 35bibi12d 235 . . . . . . . . . . . . 13 (𝑁 = 0 → (((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)) ↔ ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0)))
3732, 36imbitrrid 156 . . . . . . . . . . . 12 (𝑁 = 0 → (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2))))
38 df-ne 2379 . . . . . . . . . . . . 13 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
39 nnabscl 11526 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
40 dvdssqlem 12466 . . . . . . . . . . . . . . . . 17 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → ((abs‘𝑀) ∥ (abs‘𝑁) ↔ ((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2)))
4139, 40sylan2 286 . . . . . . . . . . . . . . . 16 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∥ (abs‘𝑁) ↔ ((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2)))
42 simpl 109 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ)
43 dvdsabsb 12236 . . . . . . . . . . . . . . . . 17 (((abs‘𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
4425, 42, 43syl2an 289 . . . . . . . . . . . . . . . 16 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
45 nnsqcl 10791 . . . . . . . . . . . . . . . . . . 19 ((abs‘𝑀) ∈ ℕ → ((abs‘𝑀)↑2) ∈ ℕ)
4645nnzd 9529 . . . . . . . . . . . . . . . . . 18 ((abs‘𝑀) ∈ ℕ → ((abs‘𝑀)↑2) ∈ ℤ)
4710adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑁↑2) ∈ ℤ)
48 dvdsabsb 12236 . . . . . . . . . . . . . . . . . 18 ((((abs‘𝑀)↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ) → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
4946, 47, 48syl2an 289 . . . . . . . . . . . . . . . . 17 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
506adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℂ)
51 abssq 11507 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℂ → ((abs‘𝑁)↑2) = (abs‘(𝑁↑2)))
5250, 51syl 14 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((abs‘𝑁)↑2) = (abs‘(𝑁↑2)))
5352breq2d 4071 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
5453adantl 277 . . . . . . . . . . . . . . . . 17 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
5549, 54bitr4d 191 . . . . . . . . . . . . . . . 16 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2)))
5641, 44, 553bitr4d 220 . . . . . . . . . . . . . . 15 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
5756anassrs 400 . . . . . . . . . . . . . 14 ((((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
5857expcom 116 . . . . . . . . . . . . 13 (𝑁 ≠ 0 → (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2))))
5938, 58sylbir 135 . . . . . . . . . . . 12 𝑁 = 0 → (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2))))
6037, 59jaoi 718 . . . . . . . . . . 11 ((𝑁 = 0 ∨ ¬ 𝑁 = 0) → (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2))))
6123, 24, 603syl 17 . . . . . . . . . 10 (𝑁 ∈ ℤ → (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2))))
6261anabsi7 581 . . . . . . . . 9 (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
6321, 62sylan 283 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
64 absdvdsb 12235 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ 𝑁))
6564adantlr 477 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ 𝑁))
66 zsqcl 10792 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
6766adantr 276 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀↑2) ∈ ℤ)
68 absdvdsb 12235 . . . . . . . . . 10 (((𝑀↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ) → ((𝑀↑2) ∥ (𝑁↑2) ↔ (abs‘(𝑀↑2)) ∥ (𝑁↑2)))
6967, 10, 68syl2an 289 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝑀↑2) ∥ (𝑁↑2) ↔ (abs‘(𝑀↑2)) ∥ (𝑁↑2)))
70 zcn 9412 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
71 abssq 11507 . . . . . . . . . . . . . 14 (𝑀 ∈ ℂ → ((abs‘𝑀)↑2) = (abs‘(𝑀↑2)))
7270, 71syl 14 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → ((abs‘𝑀)↑2) = (abs‘(𝑀↑2)))
7372eqcomd 2213 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (abs‘(𝑀↑2)) = ((abs‘𝑀)↑2))
7473adantr 276 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘(𝑀↑2)) = ((abs‘𝑀)↑2))
7574breq1d 4069 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ((abs‘(𝑀↑2)) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
7675adantr 276 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((abs‘(𝑀↑2)) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
7769, 76bitrd 188 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝑀↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
7863, 65, 773bitr4d 220 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
7978an32s 568 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
8079expcom 116 . . . . 5 (𝑀 ≠ 0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))))
8120, 80sylbir 135 . . . 4 𝑀 = 0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))))
8219, 81jaoi 718 . . 3 ((𝑀 = 0 ∨ ¬ 𝑀 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))))
833, 4, 823syl 17 . 2 (𝑀 ∈ ℤ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))))
8483anabsi5 579 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2178  wne 2378   class class class wbr 4059  cfv 5290  (class class class)co 5967  cc 7958  0cc0 7960  cn 9071  2c2 9122  cz 9407  cexp 10720  abscabs 11423  cdvds 12213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390
This theorem is referenced by:  pythagtriplem19  12720  4sqlem9  12824  4sqlem10  12825  lgsdir  15627  2sqlem8a  15714
  Copyright terms: Public domain W3C validator