ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdssq GIF version

Theorem dvdssq 12022
Description: Two numbers are divisible iff their squares are. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dvdssq ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))

Proof of Theorem dvdssq
StepHypRef Expression
1 0z 9258 . . . 4 0 ∈ ℤ
2 zdceq 9322 . . . 4 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0)
31, 2mpan2 425 . . 3 (𝑀 ∈ ℤ → DECID 𝑀 = 0)
4 exmiddc 836 . . 3 (DECID 𝑀 = 0 → (𝑀 = 0 ∨ ¬ 𝑀 = 0))
5 0dvds 11809 . . . . . . . 8 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
6 zcn 9252 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 sqeq0 10576 . . . . . . . . 9 (𝑁 ∈ ℂ → ((𝑁↑2) = 0 ↔ 𝑁 = 0))
86, 7syl 14 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝑁↑2) = 0 ↔ 𝑁 = 0))
95, 8bitr4d 191 . . . . . . 7 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ (𝑁↑2) = 0))
10 zsqcl 10583 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℤ)
11 0dvds 11809 . . . . . . . 8 ((𝑁↑2) ∈ ℤ → (0 ∥ (𝑁↑2) ↔ (𝑁↑2) = 0))
1210, 11syl 14 . . . . . . 7 (𝑁 ∈ ℤ → (0 ∥ (𝑁↑2) ↔ (𝑁↑2) = 0))
139, 12bitr4d 191 . . . . . 6 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 0 ∥ (𝑁↑2)))
1413adantl 277 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ 0 ∥ (𝑁↑2)))
15 breq1 4004 . . . . . 6 (𝑀 = 0 → (𝑀𝑁 ↔ 0 ∥ 𝑁))
16 sq0i 10604 . . . . . . 7 (𝑀 = 0 → (𝑀↑2) = 0)
1716breq1d 4011 . . . . . 6 (𝑀 = 0 → ((𝑀↑2) ∥ (𝑁↑2) ↔ 0 ∥ (𝑁↑2)))
1815, 17bibi12d 235 . . . . 5 (𝑀 = 0 → ((𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)) ↔ (0 ∥ 𝑁 ↔ 0 ∥ (𝑁↑2))))
1914, 18imbitrrid 156 . . . 4 (𝑀 = 0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))))
20 df-ne 2348 . . . . 5 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
21 nnabscl 11100 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
22 zdceq 9322 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
231, 22mpan2 425 . . . . . . . . . . 11 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
24 exmiddc 836 . . . . . . . . . . 11 (DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0))
25 nnz 9266 . . . . . . . . . . . . . . 15 ((abs‘𝑀) ∈ ℕ → (abs‘𝑀) ∈ ℤ)
26 dvds0 11804 . . . . . . . . . . . . . . . 16 ((abs‘𝑀) ∈ ℤ → (abs‘𝑀) ∥ 0)
27 zsqcl 10583 . . . . . . . . . . . . . . . . 17 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀)↑2) ∈ ℤ)
28 dvds0 11804 . . . . . . . . . . . . . . . . 17 (((abs‘𝑀)↑2) ∈ ℤ → ((abs‘𝑀)↑2) ∥ 0)
2927, 28syl 14 . . . . . . . . . . . . . . . 16 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀)↑2) ∥ 0)
3026, 292thd 175 . . . . . . . . . . . . . . 15 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0))
3125, 30syl 14 . . . . . . . . . . . . . 14 ((abs‘𝑀) ∈ ℕ → ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0))
3231adantr 276 . . . . . . . . . . . . 13 (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0))
33 breq2 4005 . . . . . . . . . . . . . 14 (𝑁 = 0 → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ 0))
34 sq0i 10604 . . . . . . . . . . . . . . 15 (𝑁 = 0 → (𝑁↑2) = 0)
3534breq2d 4013 . . . . . . . . . . . . . 14 (𝑁 = 0 → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ 0))
3633, 35bibi12d 235 . . . . . . . . . . . . 13 (𝑁 = 0 → (((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)) ↔ ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0)))
3732, 36imbitrrid 156 . . . . . . . . . . . 12 (𝑁 = 0 → (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2))))
38 df-ne 2348 . . . . . . . . . . . . 13 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
39 nnabscl 11100 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
40 dvdssqlem 12021 . . . . . . . . . . . . . . . . 17 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → ((abs‘𝑀) ∥ (abs‘𝑁) ↔ ((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2)))
4139, 40sylan2 286 . . . . . . . . . . . . . . . 16 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∥ (abs‘𝑁) ↔ ((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2)))
42 simpl 109 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ)
43 dvdsabsb 11808 . . . . . . . . . . . . . . . . 17 (((abs‘𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
4425, 42, 43syl2an 289 . . . . . . . . . . . . . . . 16 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
45 nnsqcl 10582 . . . . . . . . . . . . . . . . . . 19 ((abs‘𝑀) ∈ ℕ → ((abs‘𝑀)↑2) ∈ ℕ)
4645nnzd 9368 . . . . . . . . . . . . . . . . . 18 ((abs‘𝑀) ∈ ℕ → ((abs‘𝑀)↑2) ∈ ℤ)
4710adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑁↑2) ∈ ℤ)
48 dvdsabsb 11808 . . . . . . . . . . . . . . . . . 18 ((((abs‘𝑀)↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ) → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
4946, 47, 48syl2an 289 . . . . . . . . . . . . . . . . 17 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
506adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℂ)
51 abssq 11081 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℂ → ((abs‘𝑁)↑2) = (abs‘(𝑁↑2)))
5250, 51syl 14 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((abs‘𝑁)↑2) = (abs‘(𝑁↑2)))
5352breq2d 4013 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
5453adantl 277 . . . . . . . . . . . . . . . . 17 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
5549, 54bitr4d 191 . . . . . . . . . . . . . . . 16 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2)))
5641, 44, 553bitr4d 220 . . . . . . . . . . . . . . 15 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
5756anassrs 400 . . . . . . . . . . . . . 14 ((((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
5857expcom 116 . . . . . . . . . . . . 13 (𝑁 ≠ 0 → (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2))))
5938, 58sylbir 135 . . . . . . . . . . . 12 𝑁 = 0 → (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2))))
6037, 59jaoi 716 . . . . . . . . . . 11 ((𝑁 = 0 ∨ ¬ 𝑁 = 0) → (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2))))
6123, 24, 603syl 17 . . . . . . . . . 10 (𝑁 ∈ ℤ → (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2))))
6261anabsi7 581 . . . . . . . . 9 (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
6321, 62sylan 283 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
64 absdvdsb 11807 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ 𝑁))
6564adantlr 477 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ 𝑁))
66 zsqcl 10583 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
6766adantr 276 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀↑2) ∈ ℤ)
68 absdvdsb 11807 . . . . . . . . . 10 (((𝑀↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ) → ((𝑀↑2) ∥ (𝑁↑2) ↔ (abs‘(𝑀↑2)) ∥ (𝑁↑2)))
6967, 10, 68syl2an 289 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝑀↑2) ∥ (𝑁↑2) ↔ (abs‘(𝑀↑2)) ∥ (𝑁↑2)))
70 zcn 9252 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
71 abssq 11081 . . . . . . . . . . . . . 14 (𝑀 ∈ ℂ → ((abs‘𝑀)↑2) = (abs‘(𝑀↑2)))
7270, 71syl 14 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → ((abs‘𝑀)↑2) = (abs‘(𝑀↑2)))
7372eqcomd 2183 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (abs‘(𝑀↑2)) = ((abs‘𝑀)↑2))
7473adantr 276 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘(𝑀↑2)) = ((abs‘𝑀)↑2))
7574breq1d 4011 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ((abs‘(𝑀↑2)) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
7675adantr 276 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((abs‘(𝑀↑2)) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
7769, 76bitrd 188 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝑀↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
7863, 65, 773bitr4d 220 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
7978an32s 568 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
8079expcom 116 . . . . 5 (𝑀 ≠ 0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))))
8120, 80sylbir 135 . . . 4 𝑀 = 0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))))
8219, 81jaoi 716 . . 3 ((𝑀 = 0 ∨ ¬ 𝑀 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))))
833, 4, 823syl 17 . 2 (𝑀 ∈ ℤ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))))
8483anabsi5 579 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347   class class class wbr 4001  cfv 5213  (class class class)co 5870  cc 7804  0cc0 7806  cn 8913  2c2 8964  cz 9247  cexp 10512  abscabs 10997  cdvds 11785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4116  ax-sep 4119  ax-nul 4127  ax-pow 4172  ax-pr 4207  ax-un 4431  ax-setind 4534  ax-iinf 4585  ax-cnex 7897  ax-resscn 7898  ax-1cn 7899  ax-1re 7900  ax-icn 7901  ax-addcl 7902  ax-addrcl 7903  ax-mulcl 7904  ax-mulrcl 7905  ax-addcom 7906  ax-mulcom 7907  ax-addass 7908  ax-mulass 7909  ax-distr 7910  ax-i2m1 7911  ax-0lt1 7912  ax-1rid 7913  ax-0id 7914  ax-rnegex 7915  ax-precex 7916  ax-cnre 7917  ax-pre-ltirr 7918  ax-pre-ltwlin 7919  ax-pre-lttrn 7920  ax-pre-apti 7921  ax-pre-ltadd 7922  ax-pre-mulgt0 7923  ax-pre-mulext 7924  ax-arch 7925  ax-caucvg 7926
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3809  df-int 3844  df-iun 3887  df-br 4002  df-opab 4063  df-mpt 4064  df-tr 4100  df-id 4291  df-po 4294  df-iso 4295  df-iord 4364  df-on 4366  df-ilim 4367  df-suc 4369  df-iom 4588  df-xp 4630  df-rel 4631  df-cnv 4632  df-co 4633  df-dm 4634  df-rn 4635  df-res 4636  df-ima 4637  df-iota 5175  df-fun 5215  df-fn 5216  df-f 5217  df-f1 5218  df-fo 5219  df-f1o 5220  df-fv 5221  df-riota 5826  df-ov 5873  df-oprab 5874  df-mpo 5875  df-1st 6136  df-2nd 6137  df-recs 6301  df-frec 6387  df-sup 6978  df-pnf 7988  df-mnf 7989  df-xr 7990  df-ltxr 7991  df-le 7992  df-sub 8124  df-neg 8125  df-reap 8526  df-ap 8533  df-div 8624  df-inn 8914  df-2 8972  df-3 8973  df-4 8974  df-n0 9171  df-z 9248  df-uz 9523  df-q 9614  df-rp 9648  df-fz 10003  df-fzo 10136  df-fl 10263  df-mod 10316  df-seqfrec 10439  df-exp 10513  df-cj 10842  df-re 10843  df-im 10844  df-rsqrt 10998  df-abs 10999  df-dvds 11786  df-gcd 11934
This theorem is referenced by:  pythagtriplem19  12272  4sqlem9  12374  4sqlem10  12375  lgsdir  14218  2sqlem8a  14240
  Copyright terms: Public domain W3C validator