Proof of Theorem equsexd
| Step | Hyp | Ref
| Expression |
| 1 | | equsexd.1 |
. . 3
⊢ (𝜑 → ∀𝑥𝜑) |
| 2 | | equsexd.2 |
. . 3
⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
| 3 | | equsexd.3 |
. . . 4
⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| 4 | | biimp 118 |
. . . . 5
⊢ ((𝜓 ↔ 𝜒) → (𝜓 → 𝜒)) |
| 5 | 4 | imim2i 12 |
. . . 4
⊢ ((𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
| 6 | | pm3.31 262 |
. . . 4
⊢ ((𝑥 = 𝑦 → (𝜓 → 𝜒)) → ((𝑥 = 𝑦 ∧ 𝜓) → 𝜒)) |
| 7 | 3, 5, 6 | 3syl 17 |
. . 3
⊢ (𝜑 → ((𝑥 = 𝑦 ∧ 𝜓) → 𝜒)) |
| 8 | 1, 2, 7 | exlimd2 1609 |
. 2
⊢ (𝜑 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) → 𝜒)) |
| 9 | | a9e 1710 |
. . . 4
⊢
∃𝑥 𝑥 = 𝑦 |
| 10 | 1 | a1i 9 |
. . . . . . . . 9
⊢ (𝜑 → (𝜑 → ∀𝑥𝜑)) |
| 11 | 10, 2 | jca 306 |
. . . . . . . 8
⊢ (𝜑 → ((𝜑 → ∀𝑥𝜑) ∧ (𝜒 → ∀𝑥𝜒))) |
| 12 | | anim12 344 |
. . . . . . . 8
⊢ (((𝜑 → ∀𝑥𝜑) ∧ (𝜒 → ∀𝑥𝜒)) → ((𝜑 ∧ 𝜒) → (∀𝑥𝜑 ∧ ∀𝑥𝜒))) |
| 13 | 11, 12 | syl 14 |
. . . . . . 7
⊢ (𝜑 → ((𝜑 ∧ 𝜒) → (∀𝑥𝜑 ∧ ∀𝑥𝜒))) |
| 14 | | 19.26 1495 |
. . . . . . 7
⊢
(∀𝑥(𝜑 ∧ 𝜒) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜒)) |
| 15 | 13, 14 | imbitrrdi 162 |
. . . . . 6
⊢ (𝜑 → ((𝜑 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜒))) |
| 16 | 15 | anabsi5 579 |
. . . . 5
⊢ ((𝜑 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜒)) |
| 17 | | idd 21 |
. . . . . . . 8
⊢ (𝜒 → (𝑥 = 𝑦 → 𝑥 = 𝑦)) |
| 18 | 17 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → (𝜒 → (𝑥 = 𝑦 → 𝑥 = 𝑦))) |
| 19 | 18 | imp 124 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜒) → (𝑥 = 𝑦 → 𝑥 = 𝑦)) |
| 20 | | biimpr 130 |
. . . . . . . . 9
⊢ ((𝜓 ↔ 𝜒) → (𝜒 → 𝜓)) |
| 21 | 20 | imim2i 12 |
. . . . . . . 8
⊢ ((𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) → (𝑥 = 𝑦 → (𝜒 → 𝜓))) |
| 22 | | pm2.04 82 |
. . . . . . . 8
⊢ ((𝑥 = 𝑦 → (𝜒 → 𝜓)) → (𝜒 → (𝑥 = 𝑦 → 𝜓))) |
| 23 | 3, 21, 22 | 3syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝜒 → (𝑥 = 𝑦 → 𝜓))) |
| 24 | 23 | imp 124 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜒) → (𝑥 = 𝑦 → 𝜓)) |
| 25 | 19, 24 | jcad 307 |
. . . . 5
⊢ ((𝜑 ∧ 𝜒) → (𝑥 = 𝑦 → (𝑥 = 𝑦 ∧ 𝜓))) |
| 26 | 16, 25 | eximdh 1625 |
. . . 4
⊢ ((𝜑 ∧ 𝜒) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) |
| 27 | 9, 26 | mpi 15 |
. . 3
⊢ ((𝜑 ∧ 𝜒) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓)) |
| 28 | 27 | ex 115 |
. 2
⊢ (𝜑 → (𝜒 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) |
| 29 | 8, 28 | impbid 129 |
1
⊢ (𝜑 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ 𝜒)) |