Proof of Theorem equsexd
| Step | Hyp | Ref
 | Expression | 
| 1 |   | equsexd.1 | 
. . 3
⊢ (𝜑 → ∀𝑥𝜑) | 
| 2 |   | equsexd.2 | 
. . 3
⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | 
| 3 |   | equsexd.3 | 
. . . 4
⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | 
| 4 |   | biimp 118 | 
. . . . 5
⊢ ((𝜓 ↔ 𝜒) → (𝜓 → 𝜒)) | 
| 5 | 4 | imim2i 12 | 
. . . 4
⊢ ((𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) → (𝑥 = 𝑦 → (𝜓 → 𝜒))) | 
| 6 |   | pm3.31 262 | 
. . . 4
⊢ ((𝑥 = 𝑦 → (𝜓 → 𝜒)) → ((𝑥 = 𝑦 ∧ 𝜓) → 𝜒)) | 
| 7 | 3, 5, 6 | 3syl 17 | 
. . 3
⊢ (𝜑 → ((𝑥 = 𝑦 ∧ 𝜓) → 𝜒)) | 
| 8 | 1, 2, 7 | exlimd2 1609 | 
. 2
⊢ (𝜑 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) → 𝜒)) | 
| 9 |   | a9e 1710 | 
. . . 4
⊢
∃𝑥 𝑥 = 𝑦 | 
| 10 | 1 | a1i 9 | 
. . . . . . . . 9
⊢ (𝜑 → (𝜑 → ∀𝑥𝜑)) | 
| 11 | 10, 2 | jca 306 | 
. . . . . . . 8
⊢ (𝜑 → ((𝜑 → ∀𝑥𝜑) ∧ (𝜒 → ∀𝑥𝜒))) | 
| 12 |   | anim12 344 | 
. . . . . . . 8
⊢ (((𝜑 → ∀𝑥𝜑) ∧ (𝜒 → ∀𝑥𝜒)) → ((𝜑 ∧ 𝜒) → (∀𝑥𝜑 ∧ ∀𝑥𝜒))) | 
| 13 | 11, 12 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → ((𝜑 ∧ 𝜒) → (∀𝑥𝜑 ∧ ∀𝑥𝜒))) | 
| 14 |   | 19.26 1495 | 
. . . . . . 7
⊢
(∀𝑥(𝜑 ∧ 𝜒) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜒)) | 
| 15 | 13, 14 | imbitrrdi 162 | 
. . . . . 6
⊢ (𝜑 → ((𝜑 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜒))) | 
| 16 | 15 | anabsi5 579 | 
. . . . 5
⊢ ((𝜑 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜒)) | 
| 17 |   | idd 21 | 
. . . . . . . 8
⊢ (𝜒 → (𝑥 = 𝑦 → 𝑥 = 𝑦)) | 
| 18 | 17 | a1i 9 | 
. . . . . . 7
⊢ (𝜑 → (𝜒 → (𝑥 = 𝑦 → 𝑥 = 𝑦))) | 
| 19 | 18 | imp 124 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝜒) → (𝑥 = 𝑦 → 𝑥 = 𝑦)) | 
| 20 |   | biimpr 130 | 
. . . . . . . . 9
⊢ ((𝜓 ↔ 𝜒) → (𝜒 → 𝜓)) | 
| 21 | 20 | imim2i 12 | 
. . . . . . . 8
⊢ ((𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) → (𝑥 = 𝑦 → (𝜒 → 𝜓))) | 
| 22 |   | pm2.04 82 | 
. . . . . . . 8
⊢ ((𝑥 = 𝑦 → (𝜒 → 𝜓)) → (𝜒 → (𝑥 = 𝑦 → 𝜓))) | 
| 23 | 3, 21, 22 | 3syl 17 | 
. . . . . . 7
⊢ (𝜑 → (𝜒 → (𝑥 = 𝑦 → 𝜓))) | 
| 24 | 23 | imp 124 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝜒) → (𝑥 = 𝑦 → 𝜓)) | 
| 25 | 19, 24 | jcad 307 | 
. . . . 5
⊢ ((𝜑 ∧ 𝜒) → (𝑥 = 𝑦 → (𝑥 = 𝑦 ∧ 𝜓))) | 
| 26 | 16, 25 | eximdh 1625 | 
. . . 4
⊢ ((𝜑 ∧ 𝜒) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) | 
| 27 | 9, 26 | mpi 15 | 
. . 3
⊢ ((𝜑 ∧ 𝜒) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓)) | 
| 28 | 27 | ex 115 | 
. 2
⊢ (𝜑 → (𝜒 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜓))) | 
| 29 | 8, 28 | impbid 129 | 
1
⊢ (𝜑 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ 𝜒)) |