ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemru GIF version

Theorem ltexprlemru 7624
Description: Lemma for ltexpri 7625. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemru (𝐴<P 𝐵 → (2nd𝐵) ⊆ (2nd ‘(𝐴 +P 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem ltexprlemru
Dummy variables 𝑧 𝑤 𝑢 𝑣 𝑓 𝑔 𝑞 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7517 . . . . . . . 8 <P ⊆ (P × P)
21brel 4690 . . . . . . 7 (𝐴<P 𝐵 → (𝐴P𝐵P))
32simprd 114 . . . . . 6 (𝐴<P 𝐵𝐵P)
4 prop 7487 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
53, 4syl 14 . . . . 5 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
6 prnminu 7501 . . . . 5 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑤 ∈ (2nd𝐵)) → ∃𝑡 ∈ (2nd𝐵)𝑡 <Q 𝑤)
75, 6sylan 283 . . . 4 ((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) → ∃𝑡 ∈ (2nd𝐵)𝑡 <Q 𝑤)
8 simprr 531 . . . . . 6 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → 𝑡 <Q 𝑤)
9 elprnqu 7494 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑡 ∈ (2nd𝐵)) → 𝑡Q)
105, 9sylan 283 . . . . . . . 8 ((𝐴<P 𝐵𝑡 ∈ (2nd𝐵)) → 𝑡Q)
1110ad2ant2r 509 . . . . . . 7 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → 𝑡Q)
12 elprnqu 7494 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑤 ∈ (2nd𝐵)) → 𝑤Q)
135, 12sylan 283 . . . . . . . 8 ((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) → 𝑤Q)
1413adantr 276 . . . . . . 7 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → 𝑤Q)
15 ltexnqq 7420 . . . . . . 7 ((𝑡Q𝑤Q) → (𝑡 <Q 𝑤 ↔ ∃𝑣Q (𝑡 +Q 𝑣) = 𝑤))
1611, 14, 15syl2anc 411 . . . . . 6 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → (𝑡 <Q 𝑤 ↔ ∃𝑣Q (𝑡 +Q 𝑣) = 𝑤))
178, 16mpbid 147 . . . . 5 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → ∃𝑣Q (𝑡 +Q 𝑣) = 𝑤)
182simpld 112 . . . . . . . . . 10 (𝐴<P 𝐵𝐴P)
19 prop 7487 . . . . . . . . . 10 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2018, 19syl 14 . . . . . . . . 9 (𝐴<P 𝐵 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
21 prarloc 7515 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣Q) → ∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣))
2220, 21sylan 283 . . . . . . . 8 ((𝐴<P 𝐵𝑣Q) → ∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣))
2322adantlr 477 . . . . . . 7 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ 𝑣Q) → ∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣))
2423ad2ant2r 509 . . . . . 6 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) → ∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣))
25 simplll 533 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) → 𝐴<P 𝐵)
2625ad2antrr 488 . . . . . . . . . . . 12 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝐴<P 𝐵)
27 ltdfpr 7518 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
2827biimpd 144 . . . . . . . . . . . . 13 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
292, 28mpcom 36 . . . . . . . . . . . 12 (𝐴<P 𝐵 → ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))
3026, 29syl 14 . . . . . . . . . . 11 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))
3125adantr 276 . . . . . . . . . . . . . 14 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → 𝐴<P 𝐵)
3231ad2antrr 488 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝐴<P 𝐵)
33 simplrl 535 . . . . . . . . . . . . . 14 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑧 ∈ (1st𝐴))
3433adantr 276 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑧 ∈ (1st𝐴))
35 simprrl 539 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑞 ∈ (2nd𝐴))
36 prltlu 7499 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) → 𝑧 <Q 𝑞)
3720, 36syl3an1 1281 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑧 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) → 𝑧 <Q 𝑞)
3832, 34, 35, 37syl3anc 1248 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑧 <Q 𝑞)
39 simprrr 540 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑞 ∈ (1st𝐵))
40 simplrl 535 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) → 𝑡 ∈ (2nd𝐵))
4140adantr 276 . . . . . . . . . . . . . 14 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → 𝑡 ∈ (2nd𝐵))
4241ad2antrr 488 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑡 ∈ (2nd𝐵))
43 prltlu 7499 . . . . . . . . . . . . . 14 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑞 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) → 𝑞 <Q 𝑡)
445, 43syl3an1 1281 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑞 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) → 𝑞 <Q 𝑡)
4532, 39, 42, 44syl3anc 1248 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑞 <Q 𝑡)
46 ltsonq 7410 . . . . . . . . . . . . 13 <Q Or Q
47 ltrelnq 7377 . . . . . . . . . . . . 13 <Q ⊆ (Q × Q)
4846, 47sotri 5036 . . . . . . . . . . . 12 ((𝑧 <Q 𝑞𝑞 <Q 𝑡) → 𝑧 <Q 𝑡)
4938, 45, 48syl2anc 411 . . . . . . . . . . 11 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑧 <Q 𝑡)
5030, 49rexlimddv 2609 . . . . . . . . . 10 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑧 <Q 𝑡)
51 ltexnqi 7421 . . . . . . . . . 10 (𝑧 <Q 𝑡 → ∃𝑠Q (𝑧 +Q 𝑠) = 𝑡)
5250, 51syl 14 . . . . . . . . 9 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → ∃𝑠Q (𝑧 +Q 𝑠) = 𝑡)
53 simplrr 536 . . . . . . . . . . . 12 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → (𝑡 +Q 𝑣) = 𝑤)
5453ad2antrr 488 . . . . . . . . . . 11 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (𝑡 +Q 𝑣) = 𝑤)
55 simprr 531 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (𝑧 +Q 𝑠) = 𝑡)
56 oveq1 5895 . . . . . . . . . . . . 13 ((𝑧 +Q 𝑠) = 𝑡 → ((𝑧 +Q 𝑠) +Q 𝑣) = (𝑡 +Q 𝑣))
5756eqeq1d 2196 . . . . . . . . . . . 12 ((𝑧 +Q 𝑠) = 𝑡 → (((𝑧 +Q 𝑠) +Q 𝑣) = 𝑤 ↔ (𝑡 +Q 𝑣) = 𝑤))
5855, 57syl 14 . . . . . . . . . . 11 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (((𝑧 +Q 𝑠) +Q 𝑣) = 𝑤 ↔ (𝑡 +Q 𝑣) = 𝑤))
5954, 58mpbird 167 . . . . . . . . . 10 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → ((𝑧 +Q 𝑠) +Q 𝑣) = 𝑤)
60 elprnql 7493 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴)) → 𝑧Q)
6120, 60sylan 283 . . . . . . . . . . . . . . . 16 ((𝐴<P 𝐵𝑧 ∈ (1st𝐴)) → 𝑧Q)
6261adantlr 477 . . . . . . . . . . . . . . 15 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ 𝑧 ∈ (1st𝐴)) → 𝑧Q)
6362ad2ant2r 509 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → 𝑧Q)
6463adantlr 477 . . . . . . . . . . . . 13 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → 𝑧Q)
6564ad2antrr 488 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑧Q)
66 simplrl 535 . . . . . . . . . . . . 13 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → 𝑣Q)
6766ad2antrr 488 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑣Q)
68 simprl 529 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑠Q)
69 addcomnqg 7393 . . . . . . . . . . . . 13 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
7069adantl 277 . . . . . . . . . . . 12 ((((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
71 addassnqg 7394 . . . . . . . . . . . . 13 ((𝑓Q𝑔QQ) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
7271adantl 277 . . . . . . . . . . . 12 ((((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) ∧ (𝑓Q𝑔QQ)) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
7365, 67, 68, 70, 72caov32d 6068 . . . . . . . . . . 11 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → ((𝑧 +Q 𝑣) +Q 𝑠) = ((𝑧 +Q 𝑠) +Q 𝑣))
74 simpr 110 . . . . . . . . . . . . . 14 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑢 <Q (𝑧 +Q 𝑣))
75 simplrr 536 . . . . . . . . . . . . . . 15 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑢 ∈ (2nd𝐴))
76 prcunqu 7497 . . . . . . . . . . . . . . . 16 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (2nd𝐴)) → (𝑢 <Q (𝑧 +Q 𝑣) → (𝑧 +Q 𝑣) ∈ (2nd𝐴)))
7720, 76sylan 283 . . . . . . . . . . . . . . 15 ((𝐴<P 𝐵𝑢 ∈ (2nd𝐴)) → (𝑢 <Q (𝑧 +Q 𝑣) → (𝑧 +Q 𝑣) ∈ (2nd𝐴)))
7826, 75, 77syl2anc 411 . . . . . . . . . . . . . 14 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → (𝑢 <Q (𝑧 +Q 𝑣) → (𝑧 +Q 𝑣) ∈ (2nd𝐴)))
7974, 78mpd 13 . . . . . . . . . . . . 13 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → (𝑧 +Q 𝑣) ∈ (2nd𝐴))
8079adantr 276 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (𝑧 +Q 𝑣) ∈ (2nd𝐴))
8133adantr 276 . . . . . . . . . . . . . 14 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑧 ∈ (1st𝐴))
8241ad2antrr 488 . . . . . . . . . . . . . . 15 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑡 ∈ (2nd𝐵))
8355, 82eqeltrd 2264 . . . . . . . . . . . . . 14 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (𝑧 +Q 𝑠) ∈ (2nd𝐵))
84 eleq1 2250 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝑦 ∈ (1st𝐴) ↔ 𝑧 ∈ (1st𝐴)))
85 oveq1 5895 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝑦 +Q 𝑠) = (𝑧 +Q 𝑠))
8685eleq1d 2256 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → ((𝑦 +Q 𝑠) ∈ (2nd𝐵) ↔ (𝑧 +Q 𝑠) ∈ (2nd𝐵)))
8784, 86anbi12d 473 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → ((𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑠) ∈ (2nd𝐵)) ↔ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑠) ∈ (2nd𝐵))))
8887spcegv 2837 . . . . . . . . . . . . . . 15 (𝑧 ∈ (1st𝐴) → ((𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑠) ∈ (2nd𝐵)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑠) ∈ (2nd𝐵))))
8988anabsi5 579 . . . . . . . . . . . . . 14 ((𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑠) ∈ (2nd𝐵)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑠) ∈ (2nd𝐵)))
9081, 83, 89syl2anc 411 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑠) ∈ (2nd𝐵)))
91 ltexprlem.1 . . . . . . . . . . . . . 14 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
9291ltexprlemelu 7611 . . . . . . . . . . . . 13 (𝑠 ∈ (2nd𝐶) ↔ (𝑠Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑠) ∈ (2nd𝐵))))
9368, 90, 92sylanbrc 417 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑠 ∈ (2nd𝐶))
9431ad2antrr 488 . . . . . . . . . . . . . 14 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝐴<P 𝐵)
9594, 18syl 14 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝐴P)
9691ltexprlempr 7620 . . . . . . . . . . . . . 14 (𝐴<P 𝐵𝐶P)
9794, 96syl 14 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝐶P)
98 df-iplp 7480 . . . . . . . . . . . . . 14 +P = (𝑥P, 𝑤P ↦ ⟨{𝑧Q ∣ ∃𝑓Q𝑣Q (𝑓 ∈ (1st𝑥) ∧ 𝑣 ∈ (1st𝑤) ∧ 𝑧 = (𝑓 +Q 𝑣))}, {𝑧Q ∣ ∃𝑓Q𝑣Q (𝑓 ∈ (2nd𝑥) ∧ 𝑣 ∈ (2nd𝑤) ∧ 𝑧 = (𝑓 +Q 𝑣))}⟩)
99 addclnq 7387 . . . . . . . . . . . . . 14 ((𝑓Q𝑣Q) → (𝑓 +Q 𝑣) ∈ Q)
10098, 99genppreclu 7527 . . . . . . . . . . . . 13 ((𝐴P𝐶P) → (((𝑧 +Q 𝑣) ∈ (2nd𝐴) ∧ 𝑠 ∈ (2nd𝐶)) → ((𝑧 +Q 𝑣) +Q 𝑠) ∈ (2nd ‘(𝐴 +P 𝐶))))
10195, 97, 100syl2anc 411 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (((𝑧 +Q 𝑣) ∈ (2nd𝐴) ∧ 𝑠 ∈ (2nd𝐶)) → ((𝑧 +Q 𝑣) +Q 𝑠) ∈ (2nd ‘(𝐴 +P 𝐶))))
10280, 93, 101mp2and 433 . . . . . . . . . . 11 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → ((𝑧 +Q 𝑣) +Q 𝑠) ∈ (2nd ‘(𝐴 +P 𝐶)))
10373, 102eqeltrrd 2265 . . . . . . . . . 10 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → ((𝑧 +Q 𝑠) +Q 𝑣) ∈ (2nd ‘(𝐴 +P 𝐶)))
10459, 103eqeltrrd 2265 . . . . . . . . 9 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶)))
10552, 104rexlimddv 2609 . . . . . . . 8 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶)))
106105ex 115 . . . . . . 7 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → (𝑢 <Q (𝑧 +Q 𝑣) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶))))
107106rexlimdvva 2612 . . . . . 6 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) → (∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶))))
10824, 107mpd 13 . . . . 5 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶)))
10917, 108rexlimddv 2609 . . . 4 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶)))
1107, 109rexlimddv 2609 . . 3 ((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶)))
111110ex 115 . 2 (𝐴<P 𝐵 → (𝑤 ∈ (2nd𝐵) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶))))
112111ssrdv 3173 1 (𝐴<P 𝐵 → (2nd𝐵) ⊆ (2nd ‘(𝐴 +P 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 979   = wceq 1363  wex 1502  wcel 2158  wrex 2466  {crab 2469  wss 3141  cop 3607   class class class wbr 4015  cfv 5228  (class class class)co 5888  1st c1st 6152  2nd c2nd 6153  Qcnq 7292   +Q cplq 7294   <Q cltq 7297  Pcnp 7303   +P cpp 7305  <P cltp 7307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-eprel 4301  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-1o 6430  df-2o 6431  df-oadd 6434  df-omul 6435  df-er 6548  df-ec 6550  df-qs 6554  df-ni 7316  df-pli 7317  df-mi 7318  df-lti 7319  df-plpq 7356  df-mpq 7357  df-enq 7359  df-nqqs 7360  df-plqqs 7361  df-mqqs 7362  df-1nqqs 7363  df-rq 7364  df-ltnqqs 7365  df-enq0 7436  df-nq0 7437  df-0nq0 7438  df-plq0 7439  df-mq0 7440  df-inp 7478  df-iplp 7480  df-iltp 7482
This theorem is referenced by:  ltexpri  7625
  Copyright terms: Public domain W3C validator