ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemru GIF version

Theorem ltexprlemru 7420
Description: Lemma for ltexpri 7421. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemru (𝐴<P 𝐵 → (2nd𝐵) ⊆ (2nd ‘(𝐴 +P 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem ltexprlemru
Dummy variables 𝑧 𝑤 𝑢 𝑣 𝑓 𝑔 𝑞 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7313 . . . . . . . 8 <P ⊆ (P × P)
21brel 4591 . . . . . . 7 (𝐴<P 𝐵 → (𝐴P𝐵P))
32simprd 113 . . . . . 6 (𝐴<P 𝐵𝐵P)
4 prop 7283 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
53, 4syl 14 . . . . 5 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
6 prnminu 7297 . . . . 5 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑤 ∈ (2nd𝐵)) → ∃𝑡 ∈ (2nd𝐵)𝑡 <Q 𝑤)
75, 6sylan 281 . . . 4 ((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) → ∃𝑡 ∈ (2nd𝐵)𝑡 <Q 𝑤)
8 simprr 521 . . . . . 6 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → 𝑡 <Q 𝑤)
9 elprnqu 7290 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑡 ∈ (2nd𝐵)) → 𝑡Q)
105, 9sylan 281 . . . . . . . 8 ((𝐴<P 𝐵𝑡 ∈ (2nd𝐵)) → 𝑡Q)
1110ad2ant2r 500 . . . . . . 7 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → 𝑡Q)
12 elprnqu 7290 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑤 ∈ (2nd𝐵)) → 𝑤Q)
135, 12sylan 281 . . . . . . . 8 ((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) → 𝑤Q)
1413adantr 274 . . . . . . 7 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → 𝑤Q)
15 ltexnqq 7216 . . . . . . 7 ((𝑡Q𝑤Q) → (𝑡 <Q 𝑤 ↔ ∃𝑣Q (𝑡 +Q 𝑣) = 𝑤))
1611, 14, 15syl2anc 408 . . . . . 6 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → (𝑡 <Q 𝑤 ↔ ∃𝑣Q (𝑡 +Q 𝑣) = 𝑤))
178, 16mpbid 146 . . . . 5 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → ∃𝑣Q (𝑡 +Q 𝑣) = 𝑤)
182simpld 111 . . . . . . . . . 10 (𝐴<P 𝐵𝐴P)
19 prop 7283 . . . . . . . . . 10 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2018, 19syl 14 . . . . . . . . 9 (𝐴<P 𝐵 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
21 prarloc 7311 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣Q) → ∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣))
2220, 21sylan 281 . . . . . . . 8 ((𝐴<P 𝐵𝑣Q) → ∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣))
2322adantlr 468 . . . . . . 7 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ 𝑣Q) → ∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣))
2423ad2ant2r 500 . . . . . 6 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) → ∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣))
25 simplll 522 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) → 𝐴<P 𝐵)
2625ad2antrr 479 . . . . . . . . . . . 12 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝐴<P 𝐵)
27 ltdfpr 7314 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
2827biimpd 143 . . . . . . . . . . . . 13 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
292, 28mpcom 36 . . . . . . . . . . . 12 (𝐴<P 𝐵 → ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))
3026, 29syl 14 . . . . . . . . . . 11 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))
3125adantr 274 . . . . . . . . . . . . . 14 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → 𝐴<P 𝐵)
3231ad2antrr 479 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝐴<P 𝐵)
33 simplrl 524 . . . . . . . . . . . . . 14 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑧 ∈ (1st𝐴))
3433adantr 274 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑧 ∈ (1st𝐴))
35 simprrl 528 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑞 ∈ (2nd𝐴))
36 prltlu 7295 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) → 𝑧 <Q 𝑞)
3720, 36syl3an1 1249 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑧 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) → 𝑧 <Q 𝑞)
3832, 34, 35, 37syl3anc 1216 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑧 <Q 𝑞)
39 simprrr 529 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑞 ∈ (1st𝐵))
40 simplrl 524 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) → 𝑡 ∈ (2nd𝐵))
4140adantr 274 . . . . . . . . . . . . . 14 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → 𝑡 ∈ (2nd𝐵))
4241ad2antrr 479 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑡 ∈ (2nd𝐵))
43 prltlu 7295 . . . . . . . . . . . . . 14 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑞 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) → 𝑞 <Q 𝑡)
445, 43syl3an1 1249 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑞 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) → 𝑞 <Q 𝑡)
4532, 39, 42, 44syl3anc 1216 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑞 <Q 𝑡)
46 ltsonq 7206 . . . . . . . . . . . . 13 <Q Or Q
47 ltrelnq 7173 . . . . . . . . . . . . 13 <Q ⊆ (Q × Q)
4846, 47sotri 4934 . . . . . . . . . . . 12 ((𝑧 <Q 𝑞𝑞 <Q 𝑡) → 𝑧 <Q 𝑡)
4938, 45, 48syl2anc 408 . . . . . . . . . . 11 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑧 <Q 𝑡)
5030, 49rexlimddv 2554 . . . . . . . . . 10 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑧 <Q 𝑡)
51 ltexnqi 7217 . . . . . . . . . 10 (𝑧 <Q 𝑡 → ∃𝑠Q (𝑧 +Q 𝑠) = 𝑡)
5250, 51syl 14 . . . . . . . . 9 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → ∃𝑠Q (𝑧 +Q 𝑠) = 𝑡)
53 simplrr 525 . . . . . . . . . . . 12 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → (𝑡 +Q 𝑣) = 𝑤)
5453ad2antrr 479 . . . . . . . . . . 11 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (𝑡 +Q 𝑣) = 𝑤)
55 simprr 521 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (𝑧 +Q 𝑠) = 𝑡)
56 oveq1 5781 . . . . . . . . . . . . 13 ((𝑧 +Q 𝑠) = 𝑡 → ((𝑧 +Q 𝑠) +Q 𝑣) = (𝑡 +Q 𝑣))
5756eqeq1d 2148 . . . . . . . . . . . 12 ((𝑧 +Q 𝑠) = 𝑡 → (((𝑧 +Q 𝑠) +Q 𝑣) = 𝑤 ↔ (𝑡 +Q 𝑣) = 𝑤))
5855, 57syl 14 . . . . . . . . . . 11 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (((𝑧 +Q 𝑠) +Q 𝑣) = 𝑤 ↔ (𝑡 +Q 𝑣) = 𝑤))
5954, 58mpbird 166 . . . . . . . . . 10 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → ((𝑧 +Q 𝑠) +Q 𝑣) = 𝑤)
60 elprnql 7289 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴)) → 𝑧Q)
6120, 60sylan 281 . . . . . . . . . . . . . . . 16 ((𝐴<P 𝐵𝑧 ∈ (1st𝐴)) → 𝑧Q)
6261adantlr 468 . . . . . . . . . . . . . . 15 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ 𝑧 ∈ (1st𝐴)) → 𝑧Q)
6362ad2ant2r 500 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → 𝑧Q)
6463adantlr 468 . . . . . . . . . . . . 13 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → 𝑧Q)
6564ad2antrr 479 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑧Q)
66 simplrl 524 . . . . . . . . . . . . 13 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → 𝑣Q)
6766ad2antrr 479 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑣Q)
68 simprl 520 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑠Q)
69 addcomnqg 7189 . . . . . . . . . . . . 13 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
7069adantl 275 . . . . . . . . . . . 12 ((((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
71 addassnqg 7190 . . . . . . . . . . . . 13 ((𝑓Q𝑔QQ) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
7271adantl 275 . . . . . . . . . . . 12 ((((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) ∧ (𝑓Q𝑔QQ)) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
7365, 67, 68, 70, 72caov32d 5951 . . . . . . . . . . 11 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → ((𝑧 +Q 𝑣) +Q 𝑠) = ((𝑧 +Q 𝑠) +Q 𝑣))
74 simpr 109 . . . . . . . . . . . . . 14 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑢 <Q (𝑧 +Q 𝑣))
75 simplrr 525 . . . . . . . . . . . . . . 15 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑢 ∈ (2nd𝐴))
76 prcunqu 7293 . . . . . . . . . . . . . . . 16 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (2nd𝐴)) → (𝑢 <Q (𝑧 +Q 𝑣) → (𝑧 +Q 𝑣) ∈ (2nd𝐴)))
7720, 76sylan 281 . . . . . . . . . . . . . . 15 ((𝐴<P 𝐵𝑢 ∈ (2nd𝐴)) → (𝑢 <Q (𝑧 +Q 𝑣) → (𝑧 +Q 𝑣) ∈ (2nd𝐴)))
7826, 75, 77syl2anc 408 . . . . . . . . . . . . . 14 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → (𝑢 <Q (𝑧 +Q 𝑣) → (𝑧 +Q 𝑣) ∈ (2nd𝐴)))
7974, 78mpd 13 . . . . . . . . . . . . 13 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → (𝑧 +Q 𝑣) ∈ (2nd𝐴))
8079adantr 274 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (𝑧 +Q 𝑣) ∈ (2nd𝐴))
8133adantr 274 . . . . . . . . . . . . . 14 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑧 ∈ (1st𝐴))
8241ad2antrr 479 . . . . . . . . . . . . . . 15 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑡 ∈ (2nd𝐵))
8355, 82eqeltrd 2216 . . . . . . . . . . . . . 14 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (𝑧 +Q 𝑠) ∈ (2nd𝐵))
84 eleq1 2202 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝑦 ∈ (1st𝐴) ↔ 𝑧 ∈ (1st𝐴)))
85 oveq1 5781 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝑦 +Q 𝑠) = (𝑧 +Q 𝑠))
8685eleq1d 2208 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → ((𝑦 +Q 𝑠) ∈ (2nd𝐵) ↔ (𝑧 +Q 𝑠) ∈ (2nd𝐵)))
8784, 86anbi12d 464 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → ((𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑠) ∈ (2nd𝐵)) ↔ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑠) ∈ (2nd𝐵))))
8887spcegv 2774 . . . . . . . . . . . . . . 15 (𝑧 ∈ (1st𝐴) → ((𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑠) ∈ (2nd𝐵)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑠) ∈ (2nd𝐵))))
8988anabsi5 568 . . . . . . . . . . . . . 14 ((𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑠) ∈ (2nd𝐵)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑠) ∈ (2nd𝐵)))
9081, 83, 89syl2anc 408 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑠) ∈ (2nd𝐵)))
91 ltexprlem.1 . . . . . . . . . . . . . 14 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
9291ltexprlemelu 7407 . . . . . . . . . . . . 13 (𝑠 ∈ (2nd𝐶) ↔ (𝑠Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑠) ∈ (2nd𝐵))))
9368, 90, 92sylanbrc 413 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑠 ∈ (2nd𝐶))
9431ad2antrr 479 . . . . . . . . . . . . . 14 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝐴<P 𝐵)
9594, 18syl 14 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝐴P)
9691ltexprlempr 7416 . . . . . . . . . . . . . 14 (𝐴<P 𝐵𝐶P)
9794, 96syl 14 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝐶P)
98 df-iplp 7276 . . . . . . . . . . . . . 14 +P = (𝑥P, 𝑤P ↦ ⟨{𝑧Q ∣ ∃𝑓Q𝑣Q (𝑓 ∈ (1st𝑥) ∧ 𝑣 ∈ (1st𝑤) ∧ 𝑧 = (𝑓 +Q 𝑣))}, {𝑧Q ∣ ∃𝑓Q𝑣Q (𝑓 ∈ (2nd𝑥) ∧ 𝑣 ∈ (2nd𝑤) ∧ 𝑧 = (𝑓 +Q 𝑣))}⟩)
99 addclnq 7183 . . . . . . . . . . . . . 14 ((𝑓Q𝑣Q) → (𝑓 +Q 𝑣) ∈ Q)
10098, 99genppreclu 7323 . . . . . . . . . . . . 13 ((𝐴P𝐶P) → (((𝑧 +Q 𝑣) ∈ (2nd𝐴) ∧ 𝑠 ∈ (2nd𝐶)) → ((𝑧 +Q 𝑣) +Q 𝑠) ∈ (2nd ‘(𝐴 +P 𝐶))))
10195, 97, 100syl2anc 408 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (((𝑧 +Q 𝑣) ∈ (2nd𝐴) ∧ 𝑠 ∈ (2nd𝐶)) → ((𝑧 +Q 𝑣) +Q 𝑠) ∈ (2nd ‘(𝐴 +P 𝐶))))
10280, 93, 101mp2and 429 . . . . . . . . . . 11 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → ((𝑧 +Q 𝑣) +Q 𝑠) ∈ (2nd ‘(𝐴 +P 𝐶)))
10373, 102eqeltrrd 2217 . . . . . . . . . 10 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → ((𝑧 +Q 𝑠) +Q 𝑣) ∈ (2nd ‘(𝐴 +P 𝐶)))
10459, 103eqeltrrd 2217 . . . . . . . . 9 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶)))
10552, 104rexlimddv 2554 . . . . . . . 8 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶)))
106105ex 114 . . . . . . 7 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → (𝑢 <Q (𝑧 +Q 𝑣) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶))))
107106rexlimdvva 2557 . . . . . 6 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) → (∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶))))
10824, 107mpd 13 . . . . 5 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶)))
10917, 108rexlimddv 2554 . . . 4 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶)))
1107, 109rexlimddv 2554 . . 3 ((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶)))
111110ex 114 . 2 (𝐴<P 𝐵 → (𝑤 ∈ (2nd𝐵) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶))))
112111ssrdv 3103 1 (𝐴<P 𝐵 → (2nd𝐵) ⊆ (2nd ‘(𝐴 +P 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wex 1468  wcel 1480  wrex 2417  {crab 2420  wss 3071  cop 3530   class class class wbr 3929  cfv 5123  (class class class)co 5774  1st c1st 6036  2nd c2nd 6037  Qcnq 7088   +Q cplq 7090   <Q cltq 7093  Pcnp 7099   +P cpp 7101  <P cltp 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-iplp 7276  df-iltp 7278
This theorem is referenced by:  ltexpri  7421
  Copyright terms: Public domain W3C validator