| Step | Hyp | Ref
 | Expression | 
| 1 |   | ltrelpr 7572 | 
. . . . . . . 8
⊢
<P ⊆ (P ×
P) | 
| 2 | 1 | brel 4715 | 
. . . . . . 7
⊢ (𝐴<P
𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈
P)) | 
| 3 | 2 | simprd 114 | 
. . . . . 6
⊢ (𝐴<P
𝐵 → 𝐵 ∈ P) | 
| 4 |   | prop 7542 | 
. . . . . 6
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) | 
| 5 | 3, 4 | syl 14 | 
. . . . 5
⊢ (𝐴<P
𝐵 →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) | 
| 6 |   | prnmaddl 7557 | 
. . . . 5
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑤 ∈ (1st
‘𝐵)) →
∃𝑣 ∈
Q (𝑤
+Q 𝑣) ∈ (1st ‘𝐵)) | 
| 7 | 5, 6 | sylan 283 | 
. . . 4
⊢ ((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) → ∃𝑣 ∈ Q (𝑤 +Q
𝑣) ∈ (1st
‘𝐵)) | 
| 8 | 2 | simpld 112 | 
. . . . . . . 8
⊢ (𝐴<P
𝐵 → 𝐴 ∈ P) | 
| 9 |   | prop 7542 | 
. . . . . . . 8
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) | 
| 10 | 8, 9 | syl 14 | 
. . . . . . 7
⊢ (𝐴<P
𝐵 →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) | 
| 11 |   | prarloc 7570 | 
. . . . . . 7
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑣 ∈ Q) →
∃𝑧 ∈
(1st ‘𝐴)∃𝑢 ∈ (2nd ‘𝐴)𝑢 <Q (𝑧 +Q
𝑣)) | 
| 12 | 10, 11 | sylan 283 | 
. . . . . 6
⊢ ((𝐴<P
𝐵 ∧ 𝑣 ∈ Q) → ∃𝑧 ∈ (1st
‘𝐴)∃𝑢 ∈ (2nd
‘𝐴)𝑢 <Q (𝑧 +Q
𝑣)) | 
| 13 | 12 | ad2ant2r 509 | 
. . . . 5
⊢ (((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) →
∃𝑧 ∈
(1st ‘𝐴)∃𝑢 ∈ (2nd ‘𝐴)𝑢 <Q (𝑧 +Q
𝑣)) | 
| 14 |   | simplll 533 | 
. . . . . . . . . . 11
⊢ ((((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) → 𝐴<P
𝐵) | 
| 15 | 14 | adantr 276 | 
. . . . . . . . . 10
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝐴<P 𝐵) | 
| 16 |   | simplrl 535 | 
. . . . . . . . . 10
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝑧 ∈ (1st ‘𝐴)) | 
| 17 |   | elprnql 7548 | 
. . . . . . . . . . 11
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑧 ∈ (1st
‘𝐴)) → 𝑧 ∈
Q) | 
| 18 | 10, 17 | sylan 283 | 
. . . . . . . . . 10
⊢ ((𝐴<P
𝐵 ∧ 𝑧 ∈ (1st ‘𝐴)) → 𝑧 ∈ Q) | 
| 19 | 15, 16, 18 | syl2anc 411 | 
. . . . . . . . 9
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝑧 ∈ Q) | 
| 20 |   | elprnql 7548 | 
. . . . . . . . . . 11
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑤 ∈ (1st
‘𝐵)) → 𝑤 ∈
Q) | 
| 21 | 5, 20 | sylan 283 | 
. . . . . . . . . 10
⊢ ((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) → 𝑤 ∈ Q) | 
| 22 | 21 | ad3antrrr 492 | 
. . . . . . . . 9
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝑤 ∈ Q) | 
| 23 |   | nqtri3or 7463 | 
. . . . . . . . 9
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q)
→ (𝑧
<Q 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 <Q 𝑧)) | 
| 24 | 19, 22, 23 | syl2anc 411 | 
. . . . . . . 8
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → (𝑧 <Q 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 <Q 𝑧)) | 
| 25 |   | ltexnqq 7475 | 
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q)
→ (𝑧
<Q 𝑤 ↔ ∃𝑠 ∈ Q (𝑧 +Q 𝑠) = 𝑤)) | 
| 26 | 19, 22, 25 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → (𝑧 <Q 𝑤 ↔ ∃𝑠 ∈ Q (𝑧 +Q
𝑠) = 𝑤)) | 
| 27 | 26 | biimpa 296 | 
. . . . . . . . . . 11
⊢
((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) → ∃𝑠 ∈ Q (𝑧 +Q
𝑠) = 𝑤) | 
| 28 |   | simprr 531 | 
. . . . . . . . . . . 12
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → (𝑧 +Q 𝑠) = 𝑤) | 
| 29 | 16 | ad2antrr 488 | 
. . . . . . . . . . . . 13
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → 𝑧 ∈ (1st ‘𝐴)) | 
| 30 |   | simprl 529 | 
. . . . . . . . . . . . . 14
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → 𝑠 ∈ Q) | 
| 31 |   | simpr 110 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝑢 <Q (𝑧 +Q
𝑣)) | 
| 32 |   | simplrr 536 | 
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝑢 ∈ (2nd ‘𝐴)) | 
| 33 |   | prcunqu 7552 | 
. . . . . . . . . . . . . . . . . . 19
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑢 ∈ (2nd
‘𝐴)) → (𝑢 <Q
(𝑧
+Q 𝑣) → (𝑧 +Q 𝑣) ∈ (2nd
‘𝐴))) | 
| 34 | 10, 33 | sylan 283 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴<P
𝐵 ∧ 𝑢 ∈ (2nd ‘𝐴)) → (𝑢 <Q (𝑧 +Q
𝑣) → (𝑧 +Q
𝑣) ∈ (2nd
‘𝐴))) | 
| 35 | 15, 32, 34 | syl2anc 411 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → (𝑢 <Q (𝑧 +Q
𝑣) → (𝑧 +Q
𝑣) ∈ (2nd
‘𝐴))) | 
| 36 | 31, 35 | mpd 13 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → (𝑧 +Q 𝑣) ∈ (2nd
‘𝐴)) | 
| 37 | 36 | ad2antrr 488 | 
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → (𝑧 +Q 𝑣) ∈ (2nd
‘𝐴)) | 
| 38 | 19 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → 𝑧 ∈ Q) | 
| 39 |   | simplrl 535 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) → 𝑣 ∈
Q) | 
| 40 | 39 | ad3antrrr 492 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → 𝑣 ∈ Q) | 
| 41 |   | addcomnqg 7448 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) | 
| 42 | 41 | adantl 277 | 
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) | 
| 43 |   | addassnqg 7449 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → ((𝑓
+Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q
ℎ))) | 
| 44 | 43 | adantl 277 | 
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ ((𝑓
+Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q
ℎ))) | 
| 45 | 38, 40, 30, 42, 44 | caov32d 6104 | 
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → ((𝑧 +Q 𝑣) +Q
𝑠) = ((𝑧 +Q 𝑠) +Q
𝑣)) | 
| 46 |   | simplrr 536 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) → (𝑤 +Q
𝑣) ∈ (1st
‘𝐵)) | 
| 47 | 46 | ad3antrrr 492 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → (𝑤 +Q 𝑣) ∈ (1st
‘𝐵)) | 
| 48 |   | oveq1 5929 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 +Q
𝑠) = 𝑤 → ((𝑧 +Q 𝑠) +Q
𝑣) = (𝑤 +Q 𝑣)) | 
| 49 | 48 | eleq1d 2265 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 +Q
𝑠) = 𝑤 → (((𝑧 +Q 𝑠) +Q
𝑣) ∈ (1st
‘𝐵) ↔ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) | 
| 50 | 28, 49 | syl 14 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → (((𝑧 +Q 𝑠) +Q
𝑣) ∈ (1st
‘𝐵) ↔ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) | 
| 51 | 47, 50 | mpbird 167 | 
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → ((𝑧 +Q 𝑠) +Q
𝑣) ∈ (1st
‘𝐵)) | 
| 52 | 45, 51 | eqeltrd 2273 | 
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → ((𝑧 +Q 𝑣) +Q
𝑠) ∈ (1st
‘𝐵)) | 
| 53 |   | eleq1 2259 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑧 +Q 𝑣) → (𝑦 ∈ (2nd ‘𝐴) ↔ (𝑧 +Q 𝑣) ∈ (2nd
‘𝐴))) | 
| 54 |   | oveq1 5929 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑧 +Q 𝑣) → (𝑦 +Q 𝑠) = ((𝑧 +Q 𝑣) +Q
𝑠)) | 
| 55 | 54 | eleq1d 2265 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑧 +Q 𝑣) → ((𝑦 +Q 𝑠) ∈ (1st
‘𝐵) ↔ ((𝑧 +Q
𝑣)
+Q 𝑠) ∈ (1st ‘𝐵))) | 
| 56 | 53, 55 | anbi12d 473 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑧 +Q 𝑣) → ((𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑠) ∈ (1st
‘𝐵)) ↔ ((𝑧 +Q
𝑣) ∈ (2nd
‘𝐴) ∧ ((𝑧 +Q
𝑣)
+Q 𝑠) ∈ (1st ‘𝐵)))) | 
| 57 | 56 | spcegv 2852 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 +Q
𝑣) ∈ (2nd
‘𝐴) → (((𝑧 +Q
𝑣) ∈ (2nd
‘𝐴) ∧ ((𝑧 +Q
𝑣)
+Q 𝑠) ∈ (1st ‘𝐵)) → ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑠) ∈ (1st
‘𝐵)))) | 
| 58 | 57 | anabsi5 579 | 
. . . . . . . . . . . . . . 15
⊢ (((𝑧 +Q
𝑣) ∈ (2nd
‘𝐴) ∧ ((𝑧 +Q
𝑣)
+Q 𝑠) ∈ (1st ‘𝐵)) → ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑠) ∈ (1st
‘𝐵))) | 
| 59 | 37, 52, 58 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑠) ∈ (1st
‘𝐵))) | 
| 60 |   | ltexprlem.1 | 
. . . . . . . . . . . . . . 15
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd
‘𝐵))}〉 | 
| 61 | 60 | ltexprlemell 7665 | 
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ (1st
‘𝐶) ↔ (𝑠 ∈ Q ∧
∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑠) ∈ (1st
‘𝐵)))) | 
| 62 | 30, 59, 61 | sylanbrc 417 | 
. . . . . . . . . . . . 13
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → 𝑠 ∈ (1st ‘𝐶)) | 
| 63 | 15, 8 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝐴 ∈ P) | 
| 64 | 63 | ad2antrr 488 | 
. . . . . . . . . . . . . 14
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → 𝐴 ∈ P) | 
| 65 | 60 | ltexprlempr 7675 | 
. . . . . . . . . . . . . . . 16
⊢ (𝐴<P
𝐵 → 𝐶 ∈ P) | 
| 66 | 15, 65 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝐶 ∈ P) | 
| 67 | 66 | ad2antrr 488 | 
. . . . . . . . . . . . . 14
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → 𝐶 ∈ P) | 
| 68 |   | df-iplp 7535 | 
. . . . . . . . . . . . . . 15
⊢ 
+P = (𝑥 ∈ P, 𝑤 ∈ P ↦ 〈{𝑧 ∈ Q ∣
∃𝑓 ∈
Q ∃𝑣
∈ Q (𝑓
∈ (1st ‘𝑥) ∧ 𝑣 ∈ (1st ‘𝑤) ∧ 𝑧 = (𝑓 +Q 𝑣))}, {𝑧 ∈ Q ∣ ∃𝑓 ∈ Q
∃𝑣 ∈
Q (𝑓 ∈
(2nd ‘𝑥)
∧ 𝑣 ∈
(2nd ‘𝑤)
∧ 𝑧 = (𝑓 +Q
𝑣))}〉) | 
| 69 |   | addclnq 7442 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ Q ∧
𝑣 ∈ Q)
→ (𝑓
+Q 𝑣) ∈ Q) | 
| 70 | 68, 69 | genpprecll 7581 | 
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ P ∧
𝐶 ∈ P)
→ ((𝑧 ∈
(1st ‘𝐴)
∧ 𝑠 ∈
(1st ‘𝐶))
→ (𝑧
+Q 𝑠) ∈ (1st ‘(𝐴 +P
𝐶)))) | 
| 71 | 64, 67, 70 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → ((𝑧 ∈ (1st ‘𝐴) ∧ 𝑠 ∈ (1st ‘𝐶)) → (𝑧 +Q 𝑠) ∈ (1st
‘(𝐴
+P 𝐶)))) | 
| 72 | 29, 62, 71 | mp2and 433 | 
. . . . . . . . . . . 12
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → (𝑧 +Q 𝑠) ∈ (1st
‘(𝐴
+P 𝐶))) | 
| 73 | 28, 72 | eqeltrrd 2274 | 
. . . . . . . . . . 11
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶))) | 
| 74 | 27, 73 | rexlimddv 2619 | 
. . . . . . . . . 10
⊢
((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶))) | 
| 75 | 74 | ex 115 | 
. . . . . . . . 9
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → (𝑧 <Q 𝑤 → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶)))) | 
| 76 | 14 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢
((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 = 𝑤) → 𝐴<P 𝐵) | 
| 77 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢
((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 = 𝑤) → 𝑧 = 𝑤) | 
| 78 | 16 | adantr 276 | 
. . . . . . . . . . . 12
⊢
((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 = 𝑤) → 𝑧 ∈ (1st ‘𝐴)) | 
| 79 | 77, 78 | eqeltrrd 2274 | 
. . . . . . . . . . 11
⊢
((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 = 𝑤) → 𝑤 ∈ (1st ‘𝐴)) | 
| 80 |   | ltaddpr 7664 | 
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ P ∧
𝐶 ∈ P)
→ 𝐴<P (𝐴 +P
𝐶)) | 
| 81 | 8, 65, 80 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢ (𝐴<P
𝐵 → 𝐴<P (𝐴 +P
𝐶)) | 
| 82 |   | ltprordil 7656 | 
. . . . . . . . . . . . 13
⊢ (𝐴<P
(𝐴
+P 𝐶) → (1st ‘𝐴) ⊆ (1st
‘(𝐴
+P 𝐶))) | 
| 83 | 82 | sseld 3182 | 
. . . . . . . . . . . 12
⊢ (𝐴<P
(𝐴
+P 𝐶) → (𝑤 ∈ (1st ‘𝐴) → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶)))) | 
| 84 | 81, 83 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝐴<P
𝐵 → (𝑤 ∈ (1st
‘𝐴) → 𝑤 ∈ (1st
‘(𝐴
+P 𝐶)))) | 
| 85 | 76, 79, 84 | sylc 62 | 
. . . . . . . . . 10
⊢
((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 = 𝑤) → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶))) | 
| 86 | 85 | ex 115 | 
. . . . . . . . 9
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → (𝑧 = 𝑤 → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶)))) | 
| 87 |   | prcdnql 7551 | 
. . . . . . . . . . . 12
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑧 ∈ (1st
‘𝐴)) → (𝑤 <Q
𝑧 → 𝑤 ∈ (1st ‘𝐴))) | 
| 88 | 10, 87 | sylan 283 | 
. . . . . . . . . . 11
⊢ ((𝐴<P
𝐵 ∧ 𝑧 ∈ (1st ‘𝐴)) → (𝑤 <Q 𝑧 → 𝑤 ∈ (1st ‘𝐴))) | 
| 89 | 15, 16, 88 | syl2anc 411 | 
. . . . . . . . . 10
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → (𝑤 <Q 𝑧 → 𝑤 ∈ (1st ‘𝐴))) | 
| 90 | 15, 89, 84 | sylsyld 58 | 
. . . . . . . . 9
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → (𝑤 <Q 𝑧 → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶)))) | 
| 91 | 75, 86, 90 | 3jaod 1315 | 
. . . . . . . 8
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → ((𝑧 <Q 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 <Q 𝑧) → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶)))) | 
| 92 | 24, 91 | mpd 13 | 
. . . . . . 7
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶))) | 
| 93 | 92 | ex 115 | 
. . . . . 6
⊢ ((((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) → (𝑢 <Q
(𝑧
+Q 𝑣) → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶)))) | 
| 94 | 93 | rexlimdvva 2622 | 
. . . . 5
⊢ (((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) →
(∃𝑧 ∈
(1st ‘𝐴)∃𝑢 ∈ (2nd ‘𝐴)𝑢 <Q (𝑧 +Q
𝑣) → 𝑤 ∈ (1st
‘(𝐴
+P 𝐶)))) | 
| 95 | 13, 94 | mpd 13 | 
. . . 4
⊢ (((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) → 𝑤 ∈ (1st
‘(𝐴
+P 𝐶))) | 
| 96 | 7, 95 | rexlimddv 2619 | 
. . 3
⊢ ((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶))) | 
| 97 | 96 | ex 115 | 
. 2
⊢ (𝐴<P
𝐵 → (𝑤 ∈ (1st
‘𝐵) → 𝑤 ∈ (1st
‘(𝐴
+P 𝐶)))) | 
| 98 | 97 | ssrdv 3189 | 
1
⊢ (𝐴<P
𝐵 → (1st
‘𝐵) ⊆
(1st ‘(𝐴
+P 𝐶))) |