Step | Hyp | Ref
| Expression |
1 | | ltrelpr 7467 |
. . . . . . . 8
⊢
<P ⊆ (P ×
P) |
2 | 1 | brel 4663 |
. . . . . . 7
⊢ (𝐴<P
𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈
P)) |
3 | 2 | simprd 113 |
. . . . . 6
⊢ (𝐴<P
𝐵 → 𝐵 ∈ P) |
4 | | prop 7437 |
. . . . . 6
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) |
5 | 3, 4 | syl 14 |
. . . . 5
⊢ (𝐴<P
𝐵 →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) |
6 | | prnmaddl 7452 |
. . . . 5
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑤 ∈ (1st
‘𝐵)) →
∃𝑣 ∈
Q (𝑤
+Q 𝑣) ∈ (1st ‘𝐵)) |
7 | 5, 6 | sylan 281 |
. . . 4
⊢ ((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) → ∃𝑣 ∈ Q (𝑤 +Q
𝑣) ∈ (1st
‘𝐵)) |
8 | 2 | simpld 111 |
. . . . . . . 8
⊢ (𝐴<P
𝐵 → 𝐴 ∈ P) |
9 | | prop 7437 |
. . . . . . . 8
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
10 | 8, 9 | syl 14 |
. . . . . . 7
⊢ (𝐴<P
𝐵 →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
11 | | prarloc 7465 |
. . . . . . 7
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑣 ∈ Q) →
∃𝑧 ∈
(1st ‘𝐴)∃𝑢 ∈ (2nd ‘𝐴)𝑢 <Q (𝑧 +Q
𝑣)) |
12 | 10, 11 | sylan 281 |
. . . . . 6
⊢ ((𝐴<P
𝐵 ∧ 𝑣 ∈ Q) → ∃𝑧 ∈ (1st
‘𝐴)∃𝑢 ∈ (2nd
‘𝐴)𝑢 <Q (𝑧 +Q
𝑣)) |
13 | 12 | ad2ant2r 506 |
. . . . 5
⊢ (((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) →
∃𝑧 ∈
(1st ‘𝐴)∃𝑢 ∈ (2nd ‘𝐴)𝑢 <Q (𝑧 +Q
𝑣)) |
14 | | simplll 528 |
. . . . . . . . . . 11
⊢ ((((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) → 𝐴<P
𝐵) |
15 | 14 | adantr 274 |
. . . . . . . . . 10
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝐴<P 𝐵) |
16 | | simplrl 530 |
. . . . . . . . . 10
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝑧 ∈ (1st ‘𝐴)) |
17 | | elprnql 7443 |
. . . . . . . . . . 11
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑧 ∈ (1st
‘𝐴)) → 𝑧 ∈
Q) |
18 | 10, 17 | sylan 281 |
. . . . . . . . . 10
⊢ ((𝐴<P
𝐵 ∧ 𝑧 ∈ (1st ‘𝐴)) → 𝑧 ∈ Q) |
19 | 15, 16, 18 | syl2anc 409 |
. . . . . . . . 9
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝑧 ∈ Q) |
20 | | elprnql 7443 |
. . . . . . . . . . 11
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑤 ∈ (1st
‘𝐵)) → 𝑤 ∈
Q) |
21 | 5, 20 | sylan 281 |
. . . . . . . . . 10
⊢ ((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) → 𝑤 ∈ Q) |
22 | 21 | ad3antrrr 489 |
. . . . . . . . 9
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝑤 ∈ Q) |
23 | | nqtri3or 7358 |
. . . . . . . . 9
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q)
→ (𝑧
<Q 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 <Q 𝑧)) |
24 | 19, 22, 23 | syl2anc 409 |
. . . . . . . 8
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → (𝑧 <Q 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 <Q 𝑧)) |
25 | | ltexnqq 7370 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ Q ∧
𝑤 ∈ Q)
→ (𝑧
<Q 𝑤 ↔ ∃𝑠 ∈ Q (𝑧 +Q 𝑠) = 𝑤)) |
26 | 19, 22, 25 | syl2anc 409 |
. . . . . . . . . . . 12
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → (𝑧 <Q 𝑤 ↔ ∃𝑠 ∈ Q (𝑧 +Q
𝑠) = 𝑤)) |
27 | 26 | biimpa 294 |
. . . . . . . . . . 11
⊢
((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) → ∃𝑠 ∈ Q (𝑧 +Q
𝑠) = 𝑤) |
28 | | simprr 527 |
. . . . . . . . . . . 12
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → (𝑧 +Q 𝑠) = 𝑤) |
29 | 16 | ad2antrr 485 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → 𝑧 ∈ (1st ‘𝐴)) |
30 | | simprl 526 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → 𝑠 ∈ Q) |
31 | | simpr 109 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝑢 <Q (𝑧 +Q
𝑣)) |
32 | | simplrr 531 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝑢 ∈ (2nd ‘𝐴)) |
33 | | prcunqu 7447 |
. . . . . . . . . . . . . . . . . . 19
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑢 ∈ (2nd
‘𝐴)) → (𝑢 <Q
(𝑧
+Q 𝑣) → (𝑧 +Q 𝑣) ∈ (2nd
‘𝐴))) |
34 | 10, 33 | sylan 281 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴<P
𝐵 ∧ 𝑢 ∈ (2nd ‘𝐴)) → (𝑢 <Q (𝑧 +Q
𝑣) → (𝑧 +Q
𝑣) ∈ (2nd
‘𝐴))) |
35 | 15, 32, 34 | syl2anc 409 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → (𝑢 <Q (𝑧 +Q
𝑣) → (𝑧 +Q
𝑣) ∈ (2nd
‘𝐴))) |
36 | 31, 35 | mpd 13 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → (𝑧 +Q 𝑣) ∈ (2nd
‘𝐴)) |
37 | 36 | ad2antrr 485 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → (𝑧 +Q 𝑣) ∈ (2nd
‘𝐴)) |
38 | 19 | ad2antrr 485 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → 𝑧 ∈ Q) |
39 | | simplrl 530 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) → 𝑣 ∈
Q) |
40 | 39 | ad3antrrr 489 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → 𝑣 ∈ Q) |
41 | | addcomnqg 7343 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
42 | 41 | adantl 275 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) →
(𝑓
+Q 𝑔) = (𝑔 +Q 𝑓)) |
43 | | addassnqg 7344 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q
∧ ℎ ∈
Q) → ((𝑓
+Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q
ℎ))) |
44 | 43 | adantl 275 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧
ℎ ∈ Q))
→ ((𝑓
+Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q
ℎ))) |
45 | 38, 40, 30, 42, 44 | caov32d 6033 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → ((𝑧 +Q 𝑣) +Q
𝑠) = ((𝑧 +Q 𝑠) +Q
𝑣)) |
46 | | simplrr 531 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) → (𝑤 +Q
𝑣) ∈ (1st
‘𝐵)) |
47 | 46 | ad3antrrr 489 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → (𝑤 +Q 𝑣) ∈ (1st
‘𝐵)) |
48 | | oveq1 5860 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 +Q
𝑠) = 𝑤 → ((𝑧 +Q 𝑠) +Q
𝑣) = (𝑤 +Q 𝑣)) |
49 | 48 | eleq1d 2239 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 +Q
𝑠) = 𝑤 → (((𝑧 +Q 𝑠) +Q
𝑣) ∈ (1st
‘𝐵) ↔ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) |
50 | 28, 49 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → (((𝑧 +Q 𝑠) +Q
𝑣) ∈ (1st
‘𝐵) ↔ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) |
51 | 47, 50 | mpbird 166 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → ((𝑧 +Q 𝑠) +Q
𝑣) ∈ (1st
‘𝐵)) |
52 | 45, 51 | eqeltrd 2247 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → ((𝑧 +Q 𝑣) +Q
𝑠) ∈ (1st
‘𝐵)) |
53 | | eleq1 2233 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑧 +Q 𝑣) → (𝑦 ∈ (2nd ‘𝐴) ↔ (𝑧 +Q 𝑣) ∈ (2nd
‘𝐴))) |
54 | | oveq1 5860 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑧 +Q 𝑣) → (𝑦 +Q 𝑠) = ((𝑧 +Q 𝑣) +Q
𝑠)) |
55 | 54 | eleq1d 2239 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑧 +Q 𝑣) → ((𝑦 +Q 𝑠) ∈ (1st
‘𝐵) ↔ ((𝑧 +Q
𝑣)
+Q 𝑠) ∈ (1st ‘𝐵))) |
56 | 53, 55 | anbi12d 470 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑧 +Q 𝑣) → ((𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑠) ∈ (1st
‘𝐵)) ↔ ((𝑧 +Q
𝑣) ∈ (2nd
‘𝐴) ∧ ((𝑧 +Q
𝑣)
+Q 𝑠) ∈ (1st ‘𝐵)))) |
57 | 56 | spcegv 2818 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 +Q
𝑣) ∈ (2nd
‘𝐴) → (((𝑧 +Q
𝑣) ∈ (2nd
‘𝐴) ∧ ((𝑧 +Q
𝑣)
+Q 𝑠) ∈ (1st ‘𝐵)) → ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑠) ∈ (1st
‘𝐵)))) |
58 | 57 | anabsi5 574 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 +Q
𝑣) ∈ (2nd
‘𝐴) ∧ ((𝑧 +Q
𝑣)
+Q 𝑠) ∈ (1st ‘𝐵)) → ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑠) ∈ (1st
‘𝐵))) |
59 | 37, 52, 58 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑠) ∈ (1st
‘𝐵))) |
60 | | ltexprlem.1 |
. . . . . . . . . . . . . . 15
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd
‘𝐵))}〉 |
61 | 60 | ltexprlemell 7560 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ (1st
‘𝐶) ↔ (𝑠 ∈ Q ∧
∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑠) ∈ (1st
‘𝐵)))) |
62 | 30, 59, 61 | sylanbrc 415 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → 𝑠 ∈ (1st ‘𝐶)) |
63 | 15, 8 | syl 14 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝐴 ∈ P) |
64 | 63 | ad2antrr 485 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → 𝐴 ∈ P) |
65 | 60 | ltexprlempr 7570 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴<P
𝐵 → 𝐶 ∈ P) |
66 | 15, 65 | syl 14 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝐶 ∈ P) |
67 | 66 | ad2antrr 485 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → 𝐶 ∈ P) |
68 | | df-iplp 7430 |
. . . . . . . . . . . . . . 15
⊢
+P = (𝑥 ∈ P, 𝑤 ∈ P ↦ 〈{𝑧 ∈ Q ∣
∃𝑓 ∈
Q ∃𝑣
∈ Q (𝑓
∈ (1st ‘𝑥) ∧ 𝑣 ∈ (1st ‘𝑤) ∧ 𝑧 = (𝑓 +Q 𝑣))}, {𝑧 ∈ Q ∣ ∃𝑓 ∈ Q
∃𝑣 ∈
Q (𝑓 ∈
(2nd ‘𝑥)
∧ 𝑣 ∈
(2nd ‘𝑤)
∧ 𝑧 = (𝑓 +Q
𝑣))}〉) |
69 | | addclnq 7337 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ Q ∧
𝑣 ∈ Q)
→ (𝑓
+Q 𝑣) ∈ Q) |
70 | 68, 69 | genpprecll 7476 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ P ∧
𝐶 ∈ P)
→ ((𝑧 ∈
(1st ‘𝐴)
∧ 𝑠 ∈
(1st ‘𝐶))
→ (𝑧
+Q 𝑠) ∈ (1st ‘(𝐴 +P
𝐶)))) |
71 | 64, 67, 70 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → ((𝑧 ∈ (1st ‘𝐴) ∧ 𝑠 ∈ (1st ‘𝐶)) → (𝑧 +Q 𝑠) ∈ (1st
‘(𝐴
+P 𝐶)))) |
72 | 29, 62, 71 | mp2and 431 |
. . . . . . . . . . . 12
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → (𝑧 +Q 𝑠) ∈ (1st
‘(𝐴
+P 𝐶))) |
73 | 28, 72 | eqeltrrd 2248 |
. . . . . . . . . . 11
⊢
(((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) ∧ (𝑠 ∈ Q ∧ (𝑧 +Q
𝑠) = 𝑤)) → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶))) |
74 | 27, 73 | rexlimddv 2592 |
. . . . . . . . . 10
⊢
((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 <Q 𝑤) → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶))) |
75 | 74 | ex 114 |
. . . . . . . . 9
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → (𝑧 <Q 𝑤 → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶)))) |
76 | 14 | ad2antrr 485 |
. . . . . . . . . . 11
⊢
((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 = 𝑤) → 𝐴<P 𝐵) |
77 | | simpr 109 |
. . . . . . . . . . . 12
⊢
((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 = 𝑤) → 𝑧 = 𝑤) |
78 | 16 | adantr 274 |
. . . . . . . . . . . 12
⊢
((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 = 𝑤) → 𝑧 ∈ (1st ‘𝐴)) |
79 | 77, 78 | eqeltrrd 2248 |
. . . . . . . . . . 11
⊢
((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 = 𝑤) → 𝑤 ∈ (1st ‘𝐴)) |
80 | | ltaddpr 7559 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ P ∧
𝐶 ∈ P)
→ 𝐴<P (𝐴 +P
𝐶)) |
81 | 8, 65, 80 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (𝐴<P
𝐵 → 𝐴<P (𝐴 +P
𝐶)) |
82 | | ltprordil 7551 |
. . . . . . . . . . . . 13
⊢ (𝐴<P
(𝐴
+P 𝐶) → (1st ‘𝐴) ⊆ (1st
‘(𝐴
+P 𝐶))) |
83 | 82 | sseld 3146 |
. . . . . . . . . . . 12
⊢ (𝐴<P
(𝐴
+P 𝐶) → (𝑤 ∈ (1st ‘𝐴) → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶)))) |
84 | 81, 83 | syl 14 |
. . . . . . . . . . 11
⊢ (𝐴<P
𝐵 → (𝑤 ∈ (1st
‘𝐴) → 𝑤 ∈ (1st
‘(𝐴
+P 𝐶)))) |
85 | 76, 79, 84 | sylc 62 |
. . . . . . . . . 10
⊢
((((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) ∧ 𝑧 = 𝑤) → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶))) |
86 | 85 | ex 114 |
. . . . . . . . 9
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → (𝑧 = 𝑤 → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶)))) |
87 | | prcdnql 7446 |
. . . . . . . . . . . 12
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑧 ∈ (1st
‘𝐴)) → (𝑤 <Q
𝑧 → 𝑤 ∈ (1st ‘𝐴))) |
88 | 10, 87 | sylan 281 |
. . . . . . . . . . 11
⊢ ((𝐴<P
𝐵 ∧ 𝑧 ∈ (1st ‘𝐴)) → (𝑤 <Q 𝑧 → 𝑤 ∈ (1st ‘𝐴))) |
89 | 15, 16, 88 | syl2anc 409 |
. . . . . . . . . 10
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → (𝑤 <Q 𝑧 → 𝑤 ∈ (1st ‘𝐴))) |
90 | 15, 89, 84 | sylsyld 58 |
. . . . . . . . 9
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → (𝑤 <Q 𝑧 → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶)))) |
91 | 75, 86, 90 | 3jaod 1299 |
. . . . . . . 8
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → ((𝑧 <Q 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 <Q 𝑧) → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶)))) |
92 | 24, 91 | mpd 13 |
. . . . . . 7
⊢
(((((𝐴<P 𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) ∧ 𝑢 <Q
(𝑧
+Q 𝑣)) → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶))) |
93 | 92 | ex 114 |
. . . . . 6
⊢ ((((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) ∧ (𝑧 ∈ (1st
‘𝐴) ∧ 𝑢 ∈ (2nd
‘𝐴))) → (𝑢 <Q
(𝑧
+Q 𝑣) → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶)))) |
94 | 93 | rexlimdvva 2595 |
. . . . 5
⊢ (((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) →
(∃𝑧 ∈
(1st ‘𝐴)∃𝑢 ∈ (2nd ‘𝐴)𝑢 <Q (𝑧 +Q
𝑣) → 𝑤 ∈ (1st
‘(𝐴
+P 𝐶)))) |
95 | 13, 94 | mpd 13 |
. . . 4
⊢ (((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) ∧ (𝑣 ∈ Q ∧ (𝑤 +Q
𝑣) ∈ (1st
‘𝐵))) → 𝑤 ∈ (1st
‘(𝐴
+P 𝐶))) |
96 | 7, 95 | rexlimddv 2592 |
. . 3
⊢ ((𝐴<P
𝐵 ∧ 𝑤 ∈ (1st ‘𝐵)) → 𝑤 ∈ (1st ‘(𝐴 +P
𝐶))) |
97 | 96 | ex 114 |
. 2
⊢ (𝐴<P
𝐵 → (𝑤 ∈ (1st
‘𝐵) → 𝑤 ∈ (1st
‘(𝐴
+P 𝐶)))) |
98 | 97 | ssrdv 3153 |
1
⊢ (𝐴<P
𝐵 → (1st
‘𝐵) ⊆
(1st ‘(𝐴
+P 𝐶))) |