| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctild | GIF version | ||
| Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctild.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | jcad 307 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: anc2li 329 syl6an 1445 poxp 6290 ssenen 6912 aptiprleml 7706 zmulcl 9379 rexuz3 11155 cau3lem 11279 gcdzeq 12189 isprm3 12286 epttop 14326 lmtopcnp 14486 txcnp 14507 |
| Copyright terms: Public domain | W3C validator |