ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfis GIF version

Theorem tfis 4567
Description: Transfinite Induction Schema. If all ordinal numbers less than a given number 𝑥 have a property (induction hypothesis), then all ordinal numbers have the property (conclusion). Exercise 25 of [Enderton] p. 200. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 20-Nov-2016.)
Hypothesis
Ref Expression
tfis.1 (𝑥 ∈ On → (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑))
Assertion
Ref Expression
tfis (𝑥 ∈ On → 𝜑)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfis
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3232 . . . . 5 {𝑥 ∈ On ∣ 𝜑} ⊆ On
2 nfcv 2312 . . . . . . 7 𝑥𝑧
3 nfrab1 2649 . . . . . . . . 9 𝑥{𝑥 ∈ On ∣ 𝜑}
42, 3nfss 3140 . . . . . . . 8 𝑥 𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑}
53nfcri 2306 . . . . . . . 8 𝑥 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}
64, 5nfim 1565 . . . . . . 7 𝑥(𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})
7 dfss3 3137 . . . . . . . . 9 (𝑥 ⊆ {𝑥 ∈ On ∣ 𝜑} ↔ ∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑})
8 sseq1 3170 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 ⊆ {𝑥 ∈ On ∣ 𝜑} ↔ 𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑}))
97, 8bitr3id 193 . . . . . . . 8 (𝑥 = 𝑧 → (∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ 𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑}))
10 rabid 2645 . . . . . . . . 9 (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑥 ∈ On ∧ 𝜑))
11 eleq1 2233 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}))
1210, 11bitr3id 193 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑥 ∈ On ∧ 𝜑) ↔ 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}))
139, 12imbi12d 233 . . . . . . 7 (𝑥 = 𝑧 → ((∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → (𝑥 ∈ On ∧ 𝜑)) ↔ (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})))
14 sbequ 1833 . . . . . . . . . . . 12 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
15 nfcv 2312 . . . . . . . . . . . . 13 𝑥On
16 nfcv 2312 . . . . . . . . . . . . 13 𝑤On
17 nfv 1521 . . . . . . . . . . . . 13 𝑤𝜑
18 nfs1v 1932 . . . . . . . . . . . . 13 𝑥[𝑤 / 𝑥]𝜑
19 sbequ12 1764 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑))
2015, 16, 17, 18, 19cbvrab 2728 . . . . . . . . . . . 12 {𝑥 ∈ On ∣ 𝜑} = {𝑤 ∈ On ∣ [𝑤 / 𝑥]𝜑}
2114, 20elrab2 2889 . . . . . . . . . . 11 (𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑦 ∈ On ∧ [𝑦 / 𝑥]𝜑))
2221simprbi 273 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → [𝑦 / 𝑥]𝜑)
2322ralimi 2533 . . . . . . . . 9 (∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → ∀𝑦𝑥 [𝑦 / 𝑥]𝜑)
24 tfis.1 . . . . . . . . 9 (𝑥 ∈ On → (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑))
2523, 24syl5 32 . . . . . . . 8 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → 𝜑))
2625anc2li 327 . . . . . . 7 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → (𝑥 ∈ On ∧ 𝜑)))
272, 6, 13, 26vtoclgaf 2795 . . . . . 6 (𝑧 ∈ On → (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}))
2827rgen 2523 . . . . 5 𝑧 ∈ On (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})
29 tfi 4566 . . . . 5 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ ∀𝑧 ∈ On (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})) → {𝑥 ∈ On ∣ 𝜑} = On)
301, 28, 29mp2an 424 . . . 4 {𝑥 ∈ On ∣ 𝜑} = On
3130eqcomi 2174 . . 3 On = {𝑥 ∈ On ∣ 𝜑}
3231rabeq2i 2727 . 2 (𝑥 ∈ On ↔ (𝑥 ∈ On ∧ 𝜑))
3332simprbi 273 1 (𝑥 ∈ On → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  [wsb 1755  wcel 2141  wral 2448  {crab 2452  wss 3121  Oncon0 4348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-in 3127  df-ss 3134  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353
This theorem is referenced by:  tfis2f  4568
  Copyright terms: Public domain W3C validator