| Step | Hyp | Ref
 | Expression | 
| 1 |   | ssrab2 3268 | 
. . . . 5
⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | 
| 2 |   | nfcv 2339 | 
. . . . . . 7
⊢
Ⅎ𝑥𝑧 | 
| 3 |   | nfrab1 2677 | 
. . . . . . . . 9
⊢
Ⅎ𝑥{𝑥 ∈ On ∣ 𝜑} | 
| 4 | 2, 3 | nfss 3176 | 
. . . . . . . 8
⊢
Ⅎ𝑥 𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} | 
| 5 | 3 | nfcri 2333 | 
. . . . . . . 8
⊢
Ⅎ𝑥 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑} | 
| 6 | 4, 5 | nfim 1586 | 
. . . . . . 7
⊢
Ⅎ𝑥(𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}) | 
| 7 |   | dfss3 3173 | 
. . . . . . . . 9
⊢ (𝑥 ⊆ {𝑥 ∈ On ∣ 𝜑} ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) | 
| 8 |   | sseq1 3206 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 ⊆ {𝑥 ∈ On ∣ 𝜑} ↔ 𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑})) | 
| 9 | 7, 8 | bitr3id 194 | 
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ 𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑})) | 
| 10 |   | rabid 2673 | 
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑥 ∈ On ∧ 𝜑)) | 
| 11 |   | eleq1 2259 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})) | 
| 12 | 10, 11 | bitr3id 194 | 
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ On ∧ 𝜑) ↔ 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})) | 
| 13 | 9, 12 | imbi12d 234 | 
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((∀𝑦 ∈ 𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → (𝑥 ∈ On ∧ 𝜑)) ↔ (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}))) | 
| 14 |   | sbequ 1854 | 
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | 
| 15 |   | nfcv 2339 | 
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥On | 
| 16 |   | nfcv 2339 | 
. . . . . . . . . . . . 13
⊢
Ⅎ𝑤On | 
| 17 |   | nfv 1542 | 
. . . . . . . . . . . . 13
⊢
Ⅎ𝑤𝜑 | 
| 18 |   | nfs1v 1958 | 
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥[𝑤 / 𝑥]𝜑 | 
| 19 |   | sbequ12 1785 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑)) | 
| 20 | 15, 16, 17, 18, 19 | cbvrab 2761 | 
. . . . . . . . . . . 12
⊢ {𝑥 ∈ On ∣ 𝜑} = {𝑤 ∈ On ∣ [𝑤 / 𝑥]𝜑} | 
| 21 | 14, 20 | elrab2 2923 | 
. . . . . . . . . . 11
⊢ (𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑦 ∈ On ∧ [𝑦 / 𝑥]𝜑)) | 
| 22 | 21 | simprbi 275 | 
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → [𝑦 / 𝑥]𝜑) | 
| 23 | 22 | ralimi 2560 | 
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → ∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑) | 
| 24 |   | tfis.1 | 
. . . . . . . . 9
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑)) | 
| 25 | 23, 24 | syl5 32 | 
. . . . . . . 8
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → 𝜑)) | 
| 26 | 25 | anc2li 329 | 
. . . . . . 7
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → (𝑥 ∈ On ∧ 𝜑))) | 
| 27 | 2, 6, 13, 26 | vtoclgaf 2829 | 
. . . . . 6
⊢ (𝑧 ∈ On → (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})) | 
| 28 | 27 | rgen 2550 | 
. . . . 5
⊢
∀𝑧 ∈ On
(𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}) | 
| 29 |   | tfi 4618 | 
. . . . 5
⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ ∀𝑧 ∈ On (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})) → {𝑥 ∈ On ∣ 𝜑} = On) | 
| 30 | 1, 28, 29 | mp2an 426 | 
. . . 4
⊢ {𝑥 ∈ On ∣ 𝜑} = On | 
| 31 | 30 | eqcomi 2200 | 
. . 3
⊢ On =
{𝑥 ∈ On ∣ 𝜑} | 
| 32 | 31 | rabeq2i 2760 | 
. 2
⊢ (𝑥 ∈ On ↔ (𝑥 ∈ On ∧ 𝜑)) | 
| 33 | 32 | simprbi 275 | 
1
⊢ (𝑥 ∈ On → 𝜑) |