Proof of Theorem indpi
| Step | Hyp | Ref
| Expression |
| 1 | | indpi.4 |
. 2
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| 2 | | elni 7375 |
. . 3
⊢ (𝑥 ∈ N ↔
(𝑥 ∈ ω ∧
𝑥 ≠
∅)) |
| 3 | | eqid 2196 |
. . . . . . . . . 10
⊢ ∅ =
∅ |
| 4 | 3 | orci 732 |
. . . . . . . . 9
⊢ (∅
= ∅ ∨ [∅ / 𝑥]𝜑) |
| 5 | | nfv 1542 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∅ =
∅ |
| 6 | | nfsbc1v 3008 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥[∅ / 𝑥]𝜑 |
| 7 | 5, 6 | nfor 1588 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(∅ =
∅ ∨ [∅ / 𝑥]𝜑) |
| 8 | | 0ex 4160 |
. . . . . . . . . 10
⊢ ∅
∈ V |
| 9 | | eqeq1 2203 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (𝑥 = ∅ ↔ ∅ =
∅)) |
| 10 | | sbceq1a 2999 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (𝜑 ↔ [∅ / 𝑥]𝜑)) |
| 11 | 9, 10 | orbi12d 794 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝜑) ↔ (∅ = ∅ ∨
[∅ / 𝑥]𝜑))) |
| 12 | 7, 8, 11 | elabf 2907 |
. . . . . . . . 9
⊢ (∅
∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ (∅ = ∅ ∨
[∅ / 𝑥]𝜑)) |
| 13 | 4, 12 | mpbir 146 |
. . . . . . . 8
⊢ ∅
∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} |
| 14 | | suceq 4437 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ∅ → suc 𝑦 = suc ∅) |
| 15 | | df-1o 6474 |
. . . . . . . . . . . . . 14
⊢
1o = suc ∅ |
| 16 | 14, 15 | eqtr4di 2247 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ∅ → suc 𝑦 =
1o) |
| 17 | | indpi.5 |
. . . . . . . . . . . . . . 15
⊢ 𝜓 |
| 18 | 17 | olci 733 |
. . . . . . . . . . . . . 14
⊢
(1o = ∅ ∨ 𝜓) |
| 19 | | 1oex 6482 |
. . . . . . . . . . . . . . 15
⊢
1o ∈ V |
| 20 | | eqeq1 2203 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 1o → (𝑥 = ∅ ↔ 1o
= ∅)) |
| 21 | | indpi.1 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 1o → (𝜑 ↔ 𝜓)) |
| 22 | 20, 21 | orbi12d 794 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 1o → ((𝑥 = ∅ ∨ 𝜑) ↔ (1o = ∅ ∨ 𝜓))) |
| 23 | 19, 22 | elab 2908 |
. . . . . . . . . . . . . 14
⊢
(1o ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ (1o = ∅ ∨
𝜓)) |
| 24 | 18, 23 | mpbir 146 |
. . . . . . . . . . . . 13
⊢
1o ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} |
| 25 | 16, 24 | eqeltrdi 2287 |
. . . . . . . . . . . 12
⊢ (𝑦 = ∅ → suc 𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)}) |
| 26 | 25 | a1d 22 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → (𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)})) |
| 27 | 26 | a1i 9 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ω → (𝑦 = ∅ → (𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)}))) |
| 28 | | indpi.6 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ N →
(𝜒 → 𝜃)) |
| 29 | | elni 7375 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ N ↔
(𝑦 ∈ ω ∧
𝑦 ≠
∅)) |
| 30 | 29 | simprbi 275 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ N →
𝑦 ≠
∅) |
| 31 | 30 | neneqd 2388 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ N →
¬ 𝑦 =
∅) |
| 32 | | biorf 745 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑦 = ∅ → (𝜒 ↔ (𝑦 = ∅ ∨ 𝜒))) |
| 33 | 31, 32 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ N →
(𝜒 ↔ (𝑦 = ∅ ∨ 𝜒))) |
| 34 | | vex 2766 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V |
| 35 | | eqeq1 2203 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) |
| 36 | | indpi.2 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| 37 | 35, 36 | orbi12d 794 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ 𝜑) ↔ (𝑦 = ∅ ∨ 𝜒))) |
| 38 | 34, 37 | elab 2908 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ (𝑦 = ∅ ∨ 𝜒)) |
| 39 | 33, 38 | bitr4di 198 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ N →
(𝜒 ↔ 𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)})) |
| 40 | | 1pi 7382 |
. . . . . . . . . . . . . . . . . 18
⊢
1o ∈ N |
| 41 | | addclpi 7394 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ N ∧
1o ∈ N) → (𝑦 +N 1o)
∈ N) |
| 42 | 40, 41 | mpan2 425 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ N →
(𝑦
+N 1o) ∈
N) |
| 43 | | elni 7375 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 +N
1o) ∈ N ↔ ((𝑦 +N 1o)
∈ ω ∧ (𝑦
+N 1o) ≠ ∅)) |
| 44 | 42, 43 | sylib 122 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ N →
((𝑦
+N 1o) ∈ ω ∧ (𝑦 +N
1o) ≠ ∅)) |
| 45 | 44 | simprd 114 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ N →
(𝑦
+N 1o) ≠ ∅) |
| 46 | 45 | neneqd 2388 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ N →
¬ (𝑦
+N 1o) = ∅) |
| 47 | | biorf 745 |
. . . . . . . . . . . . . 14
⊢ (¬
(𝑦
+N 1o) = ∅ → (𝜃 ↔ ((𝑦 +N 1o) =
∅ ∨ 𝜃))) |
| 48 | 46, 47 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ N →
(𝜃 ↔ ((𝑦 +N
1o) = ∅ ∨ 𝜃))) |
| 49 | | eqeq1 2203 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑦 +N 1o)
→ (𝑥 = ∅ ↔
(𝑦
+N 1o) = ∅)) |
| 50 | | indpi.3 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑦 +N 1o)
→ (𝜑 ↔ 𝜃)) |
| 51 | 49, 50 | orbi12d 794 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑦 +N 1o)
→ ((𝑥 = ∅ ∨
𝜑) ↔ ((𝑦 +N
1o) = ∅ ∨ 𝜃))) |
| 52 | 51 | elabg 2910 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 +N
1o) ∈ N → ((𝑦 +N 1o)
∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ ((𝑦 +N 1o) =
∅ ∨ 𝜃))) |
| 53 | 42, 52 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ N →
((𝑦
+N 1o) ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ ((𝑦 +N 1o) =
∅ ∨ 𝜃))) |
| 54 | | addpiord 7383 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ N ∧
1o ∈ N) → (𝑦 +N 1o) =
(𝑦 +o
1o)) |
| 55 | 40, 54 | mpan2 425 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ N →
(𝑦
+N 1o) = (𝑦 +o
1o)) |
| 56 | | pion 7377 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ N →
𝑦 ∈
On) |
| 57 | | oa1suc 6525 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ On → (𝑦 +o 1o) =
suc 𝑦) |
| 58 | 56, 57 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ N →
(𝑦 +o
1o) = suc 𝑦) |
| 59 | 55, 58 | eqtrd 2229 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ N →
(𝑦
+N 1o) = suc 𝑦) |
| 60 | 59 | eleq1d 2265 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ N →
((𝑦
+N 1o) ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ suc 𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)})) |
| 61 | 48, 53, 60 | 3bitr2d 216 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ N →
(𝜃 ↔ suc 𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)})) |
| 62 | 28, 39, 61 | 3imtr3d 202 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ N →
(𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)})) |
| 63 | 62 | a1i 9 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ω → (𝑦 ∈ N →
(𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)}))) |
| 64 | | nndceq0 4654 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ω →
DECID 𝑦 =
∅) |
| 65 | | df-dc 836 |
. . . . . . . . . . . 12
⊢
(DECID 𝑦 = ∅ ↔ (𝑦 = ∅ ∨ ¬ 𝑦 = ∅)) |
| 66 | 64, 65 | sylib 122 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ω → (𝑦 = ∅ ∨ ¬ 𝑦 = ∅)) |
| 67 | | idd 21 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ω → (𝑦 = ∅ → 𝑦 = ∅)) |
| 68 | 67 | necon3bd 2410 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ω → (¬
𝑦 = ∅ → 𝑦 ≠ ∅)) |
| 69 | 68 | anc2li 329 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ω → (¬
𝑦 = ∅ → (𝑦 ∈ ω ∧ 𝑦 ≠
∅))) |
| 70 | 69, 29 | imbitrrdi 162 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ω → (¬
𝑦 = ∅ → 𝑦 ∈
N)) |
| 71 | 70 | orim2d 789 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ω → ((𝑦 = ∅ ∨ ¬ 𝑦 = ∅) → (𝑦 = ∅ ∨ 𝑦 ∈
N))) |
| 72 | 66, 71 | mpd 13 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ω → (𝑦 = ∅ ∨ 𝑦 ∈
N)) |
| 73 | 27, 63, 72 | mpjaod 719 |
. . . . . . . . 9
⊢ (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)})) |
| 74 | 73 | rgen 2550 |
. . . . . . . 8
⊢
∀𝑦 ∈
ω (𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)}) |
| 75 | | peano5 4634 |
. . . . . . . 8
⊢ ((∅
∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)})) → ω ⊆ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)}) |
| 76 | 13, 74, 75 | mp2an 426 |
. . . . . . 7
⊢ ω
⊆ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} |
| 77 | 76 | sseli 3179 |
. . . . . 6
⊢ (𝑥 ∈ ω → 𝑥 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)}) |
| 78 | | abid 2184 |
. . . . . 6
⊢ (𝑥 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ (𝑥 = ∅ ∨ 𝜑)) |
| 79 | 77, 78 | sylib 122 |
. . . . 5
⊢ (𝑥 ∈ ω → (𝑥 = ∅ ∨ 𝜑)) |
| 80 | 79 | adantr 276 |
. . . 4
⊢ ((𝑥 ∈ ω ∧ 𝑥 ≠ ∅) → (𝑥 = ∅ ∨ 𝜑)) |
| 81 | | df-ne 2368 |
. . . . . 6
⊢ (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅) |
| 82 | | biorf 745 |
. . . . . 6
⊢ (¬
𝑥 = ∅ → (𝜑 ↔ (𝑥 = ∅ ∨ 𝜑))) |
| 83 | 81, 82 | sylbi 121 |
. . . . 5
⊢ (𝑥 ≠ ∅ → (𝜑 ↔ (𝑥 = ∅ ∨ 𝜑))) |
| 84 | 83 | adantl 277 |
. . . 4
⊢ ((𝑥 ∈ ω ∧ 𝑥 ≠ ∅) → (𝜑 ↔ (𝑥 = ∅ ∨ 𝜑))) |
| 85 | 80, 84 | mpbird 167 |
. . 3
⊢ ((𝑥 ∈ ω ∧ 𝑥 ≠ ∅) → 𝜑) |
| 86 | 2, 85 | sylbi 121 |
. 2
⊢ (𝑥 ∈ N →
𝜑) |
| 87 | 1, 86 | vtoclga 2830 |
1
⊢ (𝐴 ∈ N →
𝜏) |