| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sssnm | GIF version | ||
| Description: The inhabited subset of a singleton. (Contributed by Jim Kingdon, 10-Aug-2018.) |
| Ref | Expression |
|---|---|
| sssnm | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {𝐵} ↔ 𝐴 = {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3186 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝐵})) | |
| 2 | elsni 3650 | . . . . . . . . . 10 ⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) | |
| 3 | 1, 2 | syl6 33 | . . . . . . . . 9 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 = 𝐵)) |
| 4 | eleq1 2267 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 5 | 3, 4 | syl6 33 | . . . . . . . 8 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴))) |
| 6 | 5 | ibd 178 | . . . . . . 7 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 7 | 6 | exlimdv 1841 | . . . . . 6 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 8 | snssi 3776 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 9 | 7, 8 | syl6 33 | . . . . 5 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → {𝐵} ⊆ 𝐴)) |
| 10 | 9 | anc2li 329 | . . . 4 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴))) |
| 11 | eqss 3207 | . . . 4 ⊢ (𝐴 = {𝐵} ↔ (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴)) | |
| 12 | 10, 11 | imbitrrdi 162 | . . 3 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 = {𝐵})) |
| 13 | 12 | com12 30 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {𝐵} → 𝐴 = {𝐵})) |
| 14 | eqimss 3246 | . 2 ⊢ (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵}) | |
| 15 | 13, 14 | impbid1 142 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {𝐵} ↔ 𝐴 = {𝐵})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∃wex 1514 ∈ wcel 2175 ⊆ wss 3165 {csn 3632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-ss 3178 df-sn 3638 |
| This theorem is referenced by: eqsnm 3795 ss1o0el1 4240 exmidn0m 4244 exmidsssn 4245 exmidomni 7243 exmidunben 12739 exmidsbthrlem 15894 sbthomlem 15897 |
| Copyright terms: Public domain | W3C validator |