ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sssnm GIF version

Theorem sssnm 3750
Description: The inhabited subset of a singleton. (Contributed by Jim Kingdon, 10-Aug-2018.)
Assertion
Ref Expression
sssnm (∃𝑥 𝑥𝐴 → (𝐴 ⊆ {𝐵} ↔ 𝐴 = {𝐵}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem sssnm
StepHypRef Expression
1 ssel 3147 . . . . . . . . . 10 (𝐴 ⊆ {𝐵} → (𝑥𝐴𝑥 ∈ {𝐵}))
2 elsni 3607 . . . . . . . . . 10 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
31, 2syl6 33 . . . . . . . . 9 (𝐴 ⊆ {𝐵} → (𝑥𝐴𝑥 = 𝐵))
4 eleq1 2238 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
53, 4syl6 33 . . . . . . . 8 (𝐴 ⊆ {𝐵} → (𝑥𝐴 → (𝑥𝐴𝐵𝐴)))
65ibd 178 . . . . . . 7 (𝐴 ⊆ {𝐵} → (𝑥𝐴𝐵𝐴))
76exlimdv 1817 . . . . . 6 (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥𝐴𝐵𝐴))
8 snssi 3733 . . . . . 6 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
97, 8syl6 33 . . . . 5 (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥𝐴 → {𝐵} ⊆ 𝐴))
109anc2li 329 . . . 4 (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥𝐴 → (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴)))
11 eqss 3168 . . . 4 (𝐴 = {𝐵} ↔ (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴))
1210, 11syl6ibr 162 . . 3 (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥𝐴𝐴 = {𝐵}))
1312com12 30 . 2 (∃𝑥 𝑥𝐴 → (𝐴 ⊆ {𝐵} → 𝐴 = {𝐵}))
14 eqimss 3207 . 2 (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵})
1513, 14impbid1 142 1 (∃𝑥 𝑥𝐴 → (𝐴 ⊆ {𝐵} ↔ 𝐴 = {𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1490  wcel 2146  wss 3127  {csn 3589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-in 3133  df-ss 3140  df-sn 3595
This theorem is referenced by:  eqsnm  3751  ss1o0el1  4192  exmidn0m  4196  exmidsssn  4197  exmidomni  7130  exmidunben  12392  exmidsbthrlem  14311  sbthomlem  14314
  Copyright terms: Public domain W3C validator