![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sssnm | GIF version |
Description: The inhabited subset of a singleton. (Contributed by Jim Kingdon, 10-Aug-2018.) |
Ref | Expression |
---|---|
sssnm | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {𝐵} ↔ 𝐴 = {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3151 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝐵})) | |
2 | elsni 3612 | . . . . . . . . . 10 ⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) | |
3 | 1, 2 | syl6 33 | . . . . . . . . 9 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 = 𝐵)) |
4 | eleq1 2240 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
5 | 3, 4 | syl6 33 | . . . . . . . 8 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴))) |
6 | 5 | ibd 178 | . . . . . . 7 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
7 | 6 | exlimdv 1819 | . . . . . 6 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
8 | snssi 3738 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
9 | 7, 8 | syl6 33 | . . . . 5 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → {𝐵} ⊆ 𝐴)) |
10 | 9 | anc2li 329 | . . . 4 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴))) |
11 | eqss 3172 | . . . 4 ⊢ (𝐴 = {𝐵} ↔ (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴)) | |
12 | 10, 11 | imbitrrdi 162 | . . 3 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 = {𝐵})) |
13 | 12 | com12 30 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {𝐵} → 𝐴 = {𝐵})) |
14 | eqimss 3211 | . 2 ⊢ (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵}) | |
15 | 13, 14 | impbid1 142 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {𝐵} ↔ 𝐴 = {𝐵})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ⊆ wss 3131 {csn 3594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-in 3137 df-ss 3144 df-sn 3600 |
This theorem is referenced by: eqsnm 3757 ss1o0el1 4199 exmidn0m 4203 exmidsssn 4204 exmidomni 7142 exmidunben 12429 exmidsbthrlem 14855 sbthomlem 14858 |
Copyright terms: Public domain | W3C validator |