| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sssnm | GIF version | ||
| Description: The inhabited subset of a singleton. (Contributed by Jim Kingdon, 10-Aug-2018.) |
| Ref | Expression |
|---|---|
| sssnm | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {𝐵} ↔ 𝐴 = {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3177 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝐵})) | |
| 2 | elsni 3640 | . . . . . . . . . 10 ⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) | |
| 3 | 1, 2 | syl6 33 | . . . . . . . . 9 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 = 𝐵)) |
| 4 | eleq1 2259 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 5 | 3, 4 | syl6 33 | . . . . . . . 8 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴))) |
| 6 | 5 | ibd 178 | . . . . . . 7 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 7 | 6 | exlimdv 1833 | . . . . . 6 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
| 8 | snssi 3766 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 9 | 7, 8 | syl6 33 | . . . . 5 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → {𝐵} ⊆ 𝐴)) |
| 10 | 9 | anc2li 329 | . . . 4 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴))) |
| 11 | eqss 3198 | . . . 4 ⊢ (𝐴 = {𝐵} ↔ (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴)) | |
| 12 | 10, 11 | imbitrrdi 162 | . . 3 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 = {𝐵})) |
| 13 | 12 | com12 30 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {𝐵} → 𝐴 = {𝐵})) |
| 14 | eqimss 3237 | . 2 ⊢ (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵}) | |
| 15 | 13, 14 | impbid1 142 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {𝐵} ↔ 𝐴 = {𝐵})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ⊆ wss 3157 {csn 3622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-sn 3628 |
| This theorem is referenced by: eqsnm 3785 ss1o0el1 4230 exmidn0m 4234 exmidsssn 4235 exmidomni 7208 exmidunben 12643 exmidsbthrlem 15666 sbthomlem 15669 |
| Copyright terms: Public domain | W3C validator |