Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sssnm | GIF version |
Description: The inhabited subset of a singleton. (Contributed by Jim Kingdon, 10-Aug-2018.) |
Ref | Expression |
---|---|
sssnm | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {𝐵} ↔ 𝐴 = {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3147 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝐵})) | |
2 | elsni 3607 | . . . . . . . . . 10 ⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) | |
3 | 1, 2 | syl6 33 | . . . . . . . . 9 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝑥 = 𝐵)) |
4 | eleq1 2238 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
5 | 3, 4 | syl6 33 | . . . . . . . 8 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴))) |
6 | 5 | ibd 178 | . . . . . . 7 ⊢ (𝐴 ⊆ {𝐵} → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
7 | 6 | exlimdv 1817 | . . . . . 6 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
8 | snssi 3733 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
9 | 7, 8 | syl6 33 | . . . . 5 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → {𝐵} ⊆ 𝐴)) |
10 | 9 | anc2li 329 | . . . 4 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴))) |
11 | eqss 3168 | . . . 4 ⊢ (𝐴 = {𝐵} ↔ (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴)) | |
12 | 10, 11 | syl6ibr 162 | . . 3 ⊢ (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 = {𝐵})) |
13 | 12 | com12 30 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {𝐵} → 𝐴 = {𝐵})) |
14 | eqimss 3207 | . 2 ⊢ (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵}) | |
15 | 13, 14 | impbid1 142 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ⊆ {𝐵} ↔ 𝐴 = {𝐵})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1490 ∈ wcel 2146 ⊆ wss 3127 {csn 3589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 df-ss 3140 df-sn 3595 |
This theorem is referenced by: eqsnm 3751 ss1o0el1 4192 exmidn0m 4196 exmidsssn 4197 exmidomni 7130 exmidunben 12392 exmidsbthrlem 14311 sbthomlem 14314 |
Copyright terms: Public domain | W3C validator |