Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anddi | GIF version |
Description: Double distributive law for conjunction. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
anddi | ⊢ (((𝜑 ∨ 𝜓) ∧ (𝜒 ∨ 𝜃)) ↔ (((𝜑 ∧ 𝜒) ∨ (𝜑 ∧ 𝜃)) ∨ ((𝜓 ∧ 𝜒) ∨ (𝜓 ∧ 𝜃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andir 814 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ (𝜒 ∨ 𝜃)) ↔ ((𝜑 ∧ (𝜒 ∨ 𝜃)) ∨ (𝜓 ∧ (𝜒 ∨ 𝜃)))) | |
2 | andi 813 | . . 3 ⊢ ((𝜑 ∧ (𝜒 ∨ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∨ (𝜑 ∧ 𝜃))) | |
3 | andi 813 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∨ 𝜃)) ↔ ((𝜓 ∧ 𝜒) ∨ (𝜓 ∧ 𝜃))) | |
4 | 2, 3 | orbi12i 759 | . 2 ⊢ (((𝜑 ∧ (𝜒 ∨ 𝜃)) ∨ (𝜓 ∧ (𝜒 ∨ 𝜃))) ↔ (((𝜑 ∧ 𝜒) ∨ (𝜑 ∧ 𝜃)) ∨ ((𝜓 ∧ 𝜒) ∨ (𝜓 ∧ 𝜃)))) |
5 | 1, 4 | bitri 183 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ (𝜒 ∨ 𝜃)) ↔ (((𝜑 ∧ 𝜒) ∨ (𝜑 ∧ 𝜃)) ∨ ((𝜓 ∧ 𝜒) ∨ (𝜓 ∧ 𝜃)))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: funun 5242 acexmidlemcase 5848 nnm00 6509 |
Copyright terms: Public domain | W3C validator |