| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > andi | GIF version | ||
| Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
| Ref | Expression |
|---|---|
| andi | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 714 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
| 2 | olc 713 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | jaodan 799 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
| 4 | orc 714 | . . . 4 ⊢ (𝜓 → (𝜓 ∨ 𝜒)) | |
| 5 | 4 | anim2i 342 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
| 6 | olc 713 | . . . 4 ⊢ (𝜒 → (𝜓 ∨ 𝜒)) | |
| 7 | 6 | anim2i 342 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
| 8 | 5, 7 | jaoi 718 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
| 9 | 3, 8 | impbii 126 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: andir 821 anddi 823 dcim 843 excxor 1398 sbequilem 1862 sborv 1915 r19.43 2665 indi 3421 difindiss 3428 unrab 3445 unipr 3866 uniun 3871 unopab 4127 xpundi 4735 coundir 5190 unpreima 5712 tpostpos 6357 elni2 7434 elznn0nn 9393 lgsquadlem3 15600 |
| Copyright terms: Public domain | W3C validator |