ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  andi GIF version

Theorem andi 808
Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.)
Assertion
Ref Expression
andi ((𝜑 ∧ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒)))

Proof of Theorem andi
StepHypRef Expression
1 orc 702 . . 3 ((𝜑𝜓) → ((𝜑𝜓) ∨ (𝜑𝜒)))
2 olc 701 . . 3 ((𝜑𝜒) → ((𝜑𝜓) ∨ (𝜑𝜒)))
31, 2jaodan 787 . 2 ((𝜑 ∧ (𝜓𝜒)) → ((𝜑𝜓) ∨ (𝜑𝜒)))
4 orc 702 . . . 4 (𝜓 → (𝜓𝜒))
54anim2i 340 . . 3 ((𝜑𝜓) → (𝜑 ∧ (𝜓𝜒)))
6 olc 701 . . . 4 (𝜒 → (𝜓𝜒))
76anim2i 340 . . 3 ((𝜑𝜒) → (𝜑 ∧ (𝜓𝜒)))
85, 7jaoi 706 . 2 (((𝜑𝜓) ∨ (𝜑𝜒)) → (𝜑 ∧ (𝜓𝜒)))
93, 8impbii 125 1 ((𝜑 ∧ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  andir  809  anddi  811  dcim  827  dcan  919  excxor  1360  sbequilem  1818  sborv  1870  r19.43  2615  indi  3354  difindiss  3361  unrab  3378  unipr  3786  uniun  3791  unopab  4043  xpundi  4639  coundir  5085  unpreima  5589  tpostpos  6205  elni2  7217  elznn0nn  9164
  Copyright terms: Public domain W3C validator