ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  andi GIF version

Theorem andi 820
Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.)
Assertion
Ref Expression
andi ((𝜑 ∧ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒)))

Proof of Theorem andi
StepHypRef Expression
1 orc 714 . . 3 ((𝜑𝜓) → ((𝜑𝜓) ∨ (𝜑𝜒)))
2 olc 713 . . 3 ((𝜑𝜒) → ((𝜑𝜓) ∨ (𝜑𝜒)))
31, 2jaodan 799 . 2 ((𝜑 ∧ (𝜓𝜒)) → ((𝜑𝜓) ∨ (𝜑𝜒)))
4 orc 714 . . . 4 (𝜓 → (𝜓𝜒))
54anim2i 342 . . 3 ((𝜑𝜓) → (𝜑 ∧ (𝜓𝜒)))
6 olc 713 . . . 4 (𝜒 → (𝜓𝜒))
76anim2i 342 . . 3 ((𝜑𝜒) → (𝜑 ∧ (𝜓𝜒)))
85, 7jaoi 718 . 2 (((𝜑𝜓) ∨ (𝜑𝜒)) → (𝜑 ∧ (𝜓𝜒)))
93, 8impbii 126 1 ((𝜑 ∧ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  andir  821  anddi  823  dcim  843  excxor  1398  sbequilem  1862  sborv  1915  r19.43  2665  indi  3421  difindiss  3428  unrab  3445  unipr  3866  uniun  3871  unopab  4127  xpundi  4735  coundir  5190  unpreima  5712  tpostpos  6357  elni2  7434  elznn0nn  9393  lgsquadlem3  15600
  Copyright terms: Public domain W3C validator