ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  andi GIF version

Theorem andi 822
Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.)
Assertion
Ref Expression
andi ((𝜑 ∧ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒)))

Proof of Theorem andi
StepHypRef Expression
1 orc 716 . . 3 ((𝜑𝜓) → ((𝜑𝜓) ∨ (𝜑𝜒)))
2 olc 715 . . 3 ((𝜑𝜒) → ((𝜑𝜓) ∨ (𝜑𝜒)))
31, 2jaodan 801 . 2 ((𝜑 ∧ (𝜓𝜒)) → ((𝜑𝜓) ∨ (𝜑𝜒)))
4 orc 716 . . . 4 (𝜓 → (𝜓𝜒))
54anim2i 342 . . 3 ((𝜑𝜓) → (𝜑 ∧ (𝜓𝜒)))
6 olc 715 . . . 4 (𝜒 → (𝜓𝜒))
76anim2i 342 . . 3 ((𝜑𝜒) → (𝜑 ∧ (𝜓𝜒)))
85, 7jaoi 720 . 2 (((𝜑𝜓) ∨ (𝜑𝜒)) → (𝜑 ∧ (𝜓𝜒)))
93, 8impbii 126 1 ((𝜑 ∧ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  andir  823  anddi  825  dcim  845  excxor  1400  sbequilem  1864  sborv  1917  r19.43  2669  indi  3431  difindiss  3438  unrab  3455  unipr  3881  uniun  3886  unopab  4142  xpundi  4752  coundir  5207  unpreima  5733  tpostpos  6380  elni2  7469  elznn0nn  9428  lgsquadlem3  15723
  Copyright terms: Public domain W3C validator