| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > andi | GIF version | ||
| Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) | 
| Ref | Expression | 
|---|---|
| andi | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orc 713 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
| 2 | olc 712 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | jaodan 798 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | 
| 4 | orc 713 | . . . 4 ⊢ (𝜓 → (𝜓 ∨ 𝜒)) | |
| 5 | 4 | anim2i 342 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ (𝜓 ∨ 𝜒))) | 
| 6 | olc 712 | . . . 4 ⊢ (𝜒 → (𝜓 ∨ 𝜒)) | |
| 7 | 6 | anim2i 342 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ (𝜓 ∨ 𝜒))) | 
| 8 | 5, 7 | jaoi 717 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∨ 𝜒))) | 
| 9 | 3, 8 | impbii 126 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 ∨ wo 709 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: andir 820 anddi 822 dcim 842 excxor 1389 sbequilem 1852 sborv 1905 r19.43 2655 indi 3410 difindiss 3417 unrab 3434 unipr 3853 uniun 3858 unopab 4112 xpundi 4719 coundir 5172 unpreima 5687 tpostpos 6322 elni2 7381 elznn0nn 9340 lgsquadlem3 15320 | 
| Copyright terms: Public domain | W3C validator |