ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  andir GIF version

Theorem andir 819
Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
andir (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∨ (𝜓𝜒)))

Proof of Theorem andir
StepHypRef Expression
1 andi 818 . 2 ((𝜒 ∧ (𝜑𝜓)) ↔ ((𝜒𝜑) ∨ (𝜒𝜓)))
2 ancom 266 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜒 ∧ (𝜑𝜓)))
3 ancom 266 . . 3 ((𝜑𝜒) ↔ (𝜒𝜑))
4 ancom 266 . . 3 ((𝜓𝜒) ↔ (𝜒𝜓))
53, 4orbi12i 764 . 2 (((𝜑𝜒) ∨ (𝜓𝜒)) ↔ ((𝜒𝜑) ∨ (𝜒𝜓)))
61, 2, 53bitr4i 212 1 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∨ (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  anddi  821  dcan  933  excxor  1378  xordc1  1393  sbequilem  1838  rexun  3317  rabun2  3416  reuun2  3420  xpundir  4685  coundi  5132  mptun  5349  tpostpos  6267  ltxr  9777  pythagtriplem2  12268  pythagtrip  12285
  Copyright terms: Public domain W3C validator