ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  andir GIF version

Theorem andir 814
Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
andir (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∨ (𝜓𝜒)))

Proof of Theorem andir
StepHypRef Expression
1 andi 813 . 2 ((𝜒 ∧ (𝜑𝜓)) ↔ ((𝜒𝜑) ∨ (𝜒𝜓)))
2 ancom 264 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜒 ∧ (𝜑𝜓)))
3 ancom 264 . . 3 ((𝜑𝜒) ↔ (𝜒𝜑))
4 ancom 264 . . 3 ((𝜓𝜒) ↔ (𝜒𝜓))
53, 4orbi12i 759 . 2 (((𝜑𝜒) ∨ (𝜓𝜒)) ↔ ((𝜒𝜑) ∨ (𝜒𝜓)))
61, 2, 53bitr4i 211 1 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∨ (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  anddi  816  dcan  928  excxor  1373  xordc1  1388  sbequilem  1831  rexun  3307  rabun2  3406  reuun2  3410  xpundir  4668  coundi  5112  mptun  5329  tpostpos  6243  ltxr  9732  pythagtriplem2  12220  pythagtrip  12237
  Copyright terms: Public domain W3C validator