ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemcase GIF version

Theorem acexmidlemcase 5777
Description: Lemma for acexmid 5781. Here we divide the proof into cases (based on the disjunction implicit in an unordered pair, not the sort of case elimination which relies on excluded middle).

The cases are (1) the choice function evaluated at 𝐴 equals {∅}, (2) the choice function evaluated at 𝐵 equals , and (3) the choice function evaluated at 𝐴 equals and the choice function evaluated at 𝐵 equals {∅}.

Because of the way we represent the choice function 𝑦, the choice function evaluated at 𝐴 is (𝑣𝐴𝑢𝑦(𝐴𝑢𝑣𝑢)) and the choice function evaluated at 𝐵 is (𝑣𝐵𝑢𝑦(𝐵𝑢𝑣𝑢)). Other than the difference in notation these work just as (𝑦𝐴) and (𝑦𝐵) would if 𝑦 were a function as defined by df-fun 5133.

Although it isn't exactly about the division into cases, it is also convenient for this lemma to also include the step that if the choice function evaluated at 𝐴 equals {∅}, then {∅} ∈ 𝐴 and likewise for 𝐵.

(Contributed by Jim Kingdon, 7-Aug-2019.)

Hypotheses
Ref Expression
acexmidlem.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
acexmidlem.b 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
acexmidlem.c 𝐶 = {𝐴, 𝐵}
Assertion
Ref Expression
acexmidlemcase (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑣,𝑢   𝑥,𝐶,𝑦,𝑧,𝑣,𝑢   𝜑,𝑥,𝑦,𝑧,𝑣,𝑢

Proof of Theorem acexmidlemcase
StepHypRef Expression
1 acexmidlem.a . . . . . . . . . . . . . 14 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
2 onsucelsucexmidlem 4452 . . . . . . . . . . . . . 14 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∈ On
31, 2eqeltri 2213 . . . . . . . . . . . . 13 𝐴 ∈ On
4 prid1g 3635 . . . . . . . . . . . . 13 (𝐴 ∈ On → 𝐴 ∈ {𝐴, 𝐵})
53, 4ax-mp 5 . . . . . . . . . . . 12 𝐴 ∈ {𝐴, 𝐵}
6 acexmidlem.c . . . . . . . . . . . 12 𝐶 = {𝐴, 𝐵}
75, 6eleqtrri 2216 . . . . . . . . . . 11 𝐴𝐶
8 eleq1 2203 . . . . . . . . . . . . . . 15 (𝑧 = 𝐴 → (𝑧𝑢𝐴𝑢))
98anbi1d 461 . . . . . . . . . . . . . 14 (𝑧 = 𝐴 → ((𝑧𝑢𝑣𝑢) ↔ (𝐴𝑢𝑣𝑢)))
109rexbidv 2439 . . . . . . . . . . . . 13 (𝑧 = 𝐴 → (∃𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑢𝑦 (𝐴𝑢𝑣𝑢)))
1110reueqd 2639 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃!𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)))
1211rspcv 2789 . . . . . . . . . . 11 (𝐴𝐶 → (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∃!𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)))
137, 12ax-mp 5 . . . . . . . . . 10 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∃!𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢))
14 riotacl 5752 . . . . . . . . . 10 (∃!𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢) → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ 𝐴)
1513, 14syl 14 . . . . . . . . 9 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ 𝐴)
16 elrabi 2841 . . . . . . . . . 10 ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ {∅, {∅}})
1716, 1eleq2s 2235 . . . . . . . . 9 ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ 𝐴 → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ {∅, {∅}})
18 elpri 3555 . . . . . . . . 9 ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ {∅, {∅}} → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅}))
1915, 17, 183syl 17 . . . . . . . 8 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅}))
20 eleq1 2203 . . . . . . . . . 10 ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅} → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ 𝐴 ↔ {∅} ∈ 𝐴))
2115, 20syl5ibcom 154 . . . . . . . . 9 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅} → {∅} ∈ 𝐴))
2221orim2d 778 . . . . . . . 8 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅}) → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ {∅} ∈ 𝐴)))
2319, 22mpd 13 . . . . . . 7 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ {∅} ∈ 𝐴))
24 acexmidlem.b . . . . . . . . . . . . . 14 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
25 pp0ex 4121 . . . . . . . . . . . . . . 15 {∅, {∅}} ∈ V
2625rabex 4080 . . . . . . . . . . . . . 14 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ∈ V
2724, 26eqeltri 2213 . . . . . . . . . . . . 13 𝐵 ∈ V
2827prid2 3638 . . . . . . . . . . . 12 𝐵 ∈ {𝐴, 𝐵}
2928, 6eleqtrri 2216 . . . . . . . . . . 11 𝐵𝐶
30 eleq1 2203 . . . . . . . . . . . . . . 15 (𝑧 = 𝐵 → (𝑧𝑢𝐵𝑢))
3130anbi1d 461 . . . . . . . . . . . . . 14 (𝑧 = 𝐵 → ((𝑧𝑢𝑣𝑢) ↔ (𝐵𝑢𝑣𝑢)))
3231rexbidv 2439 . . . . . . . . . . . . 13 (𝑧 = 𝐵 → (∃𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑢𝑦 (𝐵𝑢𝑣𝑢)))
3332reueqd 2639 . . . . . . . . . . . 12 (𝑧 = 𝐵 → (∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃!𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)))
3433rspcv 2789 . . . . . . . . . . 11 (𝐵𝐶 → (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∃!𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)))
3529, 34ax-mp 5 . . . . . . . . . 10 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∃!𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢))
36 riotacl 5752 . . . . . . . . . 10 (∃!𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢) → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ 𝐵)
3735, 36syl 14 . . . . . . . . 9 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ 𝐵)
38 elrabi 2841 . . . . . . . . . 10 ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ {∅, {∅}})
3938, 24eleq2s 2235 . . . . . . . . 9 ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ 𝐵 → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ {∅, {∅}})
40 elpri 3555 . . . . . . . . 9 ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ {∅, {∅}} → ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))
4137, 39, 403syl 17 . . . . . . . 8 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))
42 eleq1 2203 . . . . . . . . . 10 ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ → ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ 𝐵 ↔ ∅ ∈ 𝐵))
4337, 42syl5ibcom 154 . . . . . . . . 9 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ → ∅ ∈ 𝐵))
4443orim1d 777 . . . . . . . 8 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}) → (∅ ∈ 𝐵 ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
4541, 44mpd 13 . . . . . . 7 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (∅ ∈ 𝐵 ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))
4623, 45jca 304 . . . . . 6 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ {∅} ∈ 𝐴) ∧ (∅ ∈ 𝐵 ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
47 anddi 811 . . . . . 6 ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ {∅} ∈ 𝐴) ∧ (∅ ∈ 𝐵 ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ↔ ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ (({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∨ ({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
4846, 47sylib 121 . . . . 5 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ (({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∨ ({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
49 simpl 108 . . . . . . 7 (({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) → {∅} ∈ 𝐴)
50 simpl 108 . . . . . . 7 (({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}) → {∅} ∈ 𝐴)
5149, 50jaoi 706 . . . . . 6 ((({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∨ ({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) → {∅} ∈ 𝐴)
5251orim2i 751 . . . . 5 (((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ (({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∨ ({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))) → ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ {∅} ∈ 𝐴))
5348, 52syl 14 . . . 4 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ {∅} ∈ 𝐴))
5453orcomd 719 . . 3 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
55 simpr 109 . . . . 5 (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) → ∅ ∈ 𝐵)
5655orim1i 750 . . . 4 ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) → (∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
5756orim2i 751 . . 3 (({∅} ∈ 𝐴 ∨ (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))) → ({∅} ∈ 𝐴 ∨ (∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
5854, 57syl 14 . 2 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ (∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
59 3orass 966 . 2 (({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ↔ ({∅} ∈ 𝐴 ∨ (∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
6058, 59sylibr 133 1 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  w3o 962   = wceq 1332  wcel 1481  wral 2417  wrex 2418  ∃!wreu 2419  {crab 2421  Vcvv 2689  c0 3368  {csn 3532  {cpr 3533  Oncon0 4293  crio 5737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-uni 3745  df-tr 4035  df-iord 4296  df-on 4298  df-suc 4301  df-iota 5096  df-riota 5738
This theorem is referenced by:  acexmidlem1  5778
  Copyright terms: Public domain W3C validator