ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemcase GIF version

Theorem acexmidlemcase 5837
Description: Lemma for acexmid 5841. Here we divide the proof into cases (based on the disjunction implicit in an unordered pair, not the sort of case elimination which relies on excluded middle).

The cases are (1) the choice function evaluated at 𝐴 equals {∅}, (2) the choice function evaluated at 𝐵 equals , and (3) the choice function evaluated at 𝐴 equals and the choice function evaluated at 𝐵 equals {∅}.

Because of the way we represent the choice function 𝑦, the choice function evaluated at 𝐴 is (𝑣𝐴𝑢𝑦(𝐴𝑢𝑣𝑢)) and the choice function evaluated at 𝐵 is (𝑣𝐵𝑢𝑦(𝐵𝑢𝑣𝑢)). Other than the difference in notation these work just as (𝑦𝐴) and (𝑦𝐵) would if 𝑦 were a function as defined by df-fun 5190.

Although it isn't exactly about the division into cases, it is also convenient for this lemma to also include the step that if the choice function evaluated at 𝐴 equals {∅}, then {∅} ∈ 𝐴 and likewise for 𝐵.

(Contributed by Jim Kingdon, 7-Aug-2019.)

Hypotheses
Ref Expression
acexmidlem.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
acexmidlem.b 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
acexmidlem.c 𝐶 = {𝐴, 𝐵}
Assertion
Ref Expression
acexmidlemcase (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑣,𝑢   𝑥,𝐶,𝑦,𝑧,𝑣,𝑢   𝜑,𝑥,𝑦,𝑧,𝑣,𝑢

Proof of Theorem acexmidlemcase
StepHypRef Expression
1 acexmidlem.a . . . . . . . . . . . . . 14 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
2 onsucelsucexmidlem 4506 . . . . . . . . . . . . . 14 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∈ On
31, 2eqeltri 2239 . . . . . . . . . . . . 13 𝐴 ∈ On
4 prid1g 3680 . . . . . . . . . . . . 13 (𝐴 ∈ On → 𝐴 ∈ {𝐴, 𝐵})
53, 4ax-mp 5 . . . . . . . . . . . 12 𝐴 ∈ {𝐴, 𝐵}
6 acexmidlem.c . . . . . . . . . . . 12 𝐶 = {𝐴, 𝐵}
75, 6eleqtrri 2242 . . . . . . . . . . 11 𝐴𝐶
8 eleq1 2229 . . . . . . . . . . . . . . 15 (𝑧 = 𝐴 → (𝑧𝑢𝐴𝑢))
98anbi1d 461 . . . . . . . . . . . . . 14 (𝑧 = 𝐴 → ((𝑧𝑢𝑣𝑢) ↔ (𝐴𝑢𝑣𝑢)))
109rexbidv 2467 . . . . . . . . . . . . 13 (𝑧 = 𝐴 → (∃𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑢𝑦 (𝐴𝑢𝑣𝑢)))
1110reueqd 2671 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃!𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)))
1211rspcv 2826 . . . . . . . . . . 11 (𝐴𝐶 → (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∃!𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)))
137, 12ax-mp 5 . . . . . . . . . 10 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∃!𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢))
14 riotacl 5812 . . . . . . . . . 10 (∃!𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢) → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ 𝐴)
1513, 14syl 14 . . . . . . . . 9 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ 𝐴)
16 elrabi 2879 . . . . . . . . . 10 ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ {∅, {∅}})
1716, 1eleq2s 2261 . . . . . . . . 9 ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ 𝐴 → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ {∅, {∅}})
18 elpri 3599 . . . . . . . . 9 ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ {∅, {∅}} → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅}))
1915, 17, 183syl 17 . . . . . . . 8 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅}))
20 eleq1 2229 . . . . . . . . . 10 ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅} → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ 𝐴 ↔ {∅} ∈ 𝐴))
2115, 20syl5ibcom 154 . . . . . . . . 9 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅} → {∅} ∈ 𝐴))
2221orim2d 778 . . . . . . . 8 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅}) → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ {∅} ∈ 𝐴)))
2319, 22mpd 13 . . . . . . 7 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ {∅} ∈ 𝐴))
24 acexmidlem.b . . . . . . . . . . . . . 14 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
25 pp0ex 4168 . . . . . . . . . . . . . . 15 {∅, {∅}} ∈ V
2625rabex 4126 . . . . . . . . . . . . . 14 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ∈ V
2724, 26eqeltri 2239 . . . . . . . . . . . . 13 𝐵 ∈ V
2827prid2 3683 . . . . . . . . . . . 12 𝐵 ∈ {𝐴, 𝐵}
2928, 6eleqtrri 2242 . . . . . . . . . . 11 𝐵𝐶
30 eleq1 2229 . . . . . . . . . . . . . . 15 (𝑧 = 𝐵 → (𝑧𝑢𝐵𝑢))
3130anbi1d 461 . . . . . . . . . . . . . 14 (𝑧 = 𝐵 → ((𝑧𝑢𝑣𝑢) ↔ (𝐵𝑢𝑣𝑢)))
3231rexbidv 2467 . . . . . . . . . . . . 13 (𝑧 = 𝐵 → (∃𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑢𝑦 (𝐵𝑢𝑣𝑢)))
3332reueqd 2671 . . . . . . . . . . . 12 (𝑧 = 𝐵 → (∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃!𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)))
3433rspcv 2826 . . . . . . . . . . 11 (𝐵𝐶 → (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∃!𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)))
3529, 34ax-mp 5 . . . . . . . . . 10 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∃!𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢))
36 riotacl 5812 . . . . . . . . . 10 (∃!𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢) → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ 𝐵)
3735, 36syl 14 . . . . . . . . 9 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ 𝐵)
38 elrabi 2879 . . . . . . . . . 10 ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ {∅, {∅}})
3938, 24eleq2s 2261 . . . . . . . . 9 ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ 𝐵 → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ {∅, {∅}})
40 elpri 3599 . . . . . . . . 9 ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ {∅, {∅}} → ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))
4137, 39, 403syl 17 . . . . . . . 8 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))
42 eleq1 2229 . . . . . . . . . 10 ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ → ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ 𝐵 ↔ ∅ ∈ 𝐵))
4337, 42syl5ibcom 154 . . . . . . . . 9 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ → ∅ ∈ 𝐵))
4443orim1d 777 . . . . . . . 8 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}) → (∅ ∈ 𝐵 ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
4541, 44mpd 13 . . . . . . 7 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (∅ ∈ 𝐵 ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))
4623, 45jca 304 . . . . . 6 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ {∅} ∈ 𝐴) ∧ (∅ ∈ 𝐵 ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
47 anddi 811 . . . . . 6 ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ {∅} ∈ 𝐴) ∧ (∅ ∈ 𝐵 ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ↔ ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ (({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∨ ({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
4846, 47sylib 121 . . . . 5 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ (({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∨ ({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
49 simpl 108 . . . . . . 7 (({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) → {∅} ∈ 𝐴)
50 simpl 108 . . . . . . 7 (({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}) → {∅} ∈ 𝐴)
5149, 50jaoi 706 . . . . . 6 ((({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∨ ({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) → {∅} ∈ 𝐴)
5251orim2i 751 . . . . 5 (((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ (({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∨ ({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))) → ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ {∅} ∈ 𝐴))
5348, 52syl 14 . . . 4 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ {∅} ∈ 𝐴))
5453orcomd 719 . . 3 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
55 simpr 109 . . . . 5 (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) → ∅ ∈ 𝐵)
5655orim1i 750 . . . 4 ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) → (∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
5756orim2i 751 . . 3 (({∅} ∈ 𝐴 ∨ (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))) → ({∅} ∈ 𝐴 ∨ (∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
5854, 57syl 14 . 2 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ (∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
59 3orass 971 . 2 (({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ↔ ({∅} ∈ 𝐴 ∨ (∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
6058, 59sylibr 133 1 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  w3o 967   = wceq 1343  wcel 2136  wral 2444  wrex 2445  ∃!wreu 2446  {crab 2448  Vcvv 2726  c0 3409  {csn 3576  {cpr 3577  Oncon0 4341  crio 5797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346  df-suc 4349  df-iota 5153  df-riota 5798
This theorem is referenced by:  acexmidlem1  5838
  Copyright terms: Public domain W3C validator