ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemcase GIF version

Theorem acexmidlemcase 5848
Description: Lemma for acexmid 5852. Here we divide the proof into cases (based on the disjunction implicit in an unordered pair, not the sort of case elimination which relies on excluded middle).

The cases are (1) the choice function evaluated at 𝐴 equals {∅}, (2) the choice function evaluated at 𝐵 equals , and (3) the choice function evaluated at 𝐴 equals and the choice function evaluated at 𝐵 equals {∅}.

Because of the way we represent the choice function 𝑦, the choice function evaluated at 𝐴 is (𝑣𝐴𝑢𝑦(𝐴𝑢𝑣𝑢)) and the choice function evaluated at 𝐵 is (𝑣𝐵𝑢𝑦(𝐵𝑢𝑣𝑢)). Other than the difference in notation these work just as (𝑦𝐴) and (𝑦𝐵) would if 𝑦 were a function as defined by df-fun 5200.

Although it isn't exactly about the division into cases, it is also convenient for this lemma to also include the step that if the choice function evaluated at 𝐴 equals {∅}, then {∅} ∈ 𝐴 and likewise for 𝐵.

(Contributed by Jim Kingdon, 7-Aug-2019.)

Hypotheses
Ref Expression
acexmidlem.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
acexmidlem.b 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
acexmidlem.c 𝐶 = {𝐴, 𝐵}
Assertion
Ref Expression
acexmidlemcase (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑣,𝑢   𝑥,𝐶,𝑦,𝑧,𝑣,𝑢   𝜑,𝑥,𝑦,𝑧,𝑣,𝑢

Proof of Theorem acexmidlemcase
StepHypRef Expression
1 acexmidlem.a . . . . . . . . . . . . . 14 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
2 onsucelsucexmidlem 4513 . . . . . . . . . . . . . 14 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∈ On
31, 2eqeltri 2243 . . . . . . . . . . . . 13 𝐴 ∈ On
4 prid1g 3687 . . . . . . . . . . . . 13 (𝐴 ∈ On → 𝐴 ∈ {𝐴, 𝐵})
53, 4ax-mp 5 . . . . . . . . . . . 12 𝐴 ∈ {𝐴, 𝐵}
6 acexmidlem.c . . . . . . . . . . . 12 𝐶 = {𝐴, 𝐵}
75, 6eleqtrri 2246 . . . . . . . . . . 11 𝐴𝐶
8 eleq1 2233 . . . . . . . . . . . . . . 15 (𝑧 = 𝐴 → (𝑧𝑢𝐴𝑢))
98anbi1d 462 . . . . . . . . . . . . . 14 (𝑧 = 𝐴 → ((𝑧𝑢𝑣𝑢) ↔ (𝐴𝑢𝑣𝑢)))
109rexbidv 2471 . . . . . . . . . . . . 13 (𝑧 = 𝐴 → (∃𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑢𝑦 (𝐴𝑢𝑣𝑢)))
1110reueqd 2675 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃!𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)))
1211rspcv 2830 . . . . . . . . . . 11 (𝐴𝐶 → (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∃!𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)))
137, 12ax-mp 5 . . . . . . . . . 10 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∃!𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢))
14 riotacl 5823 . . . . . . . . . 10 (∃!𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢) → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ 𝐴)
1513, 14syl 14 . . . . . . . . 9 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ 𝐴)
16 elrabi 2883 . . . . . . . . . 10 ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ {∅, {∅}})
1716, 1eleq2s 2265 . . . . . . . . 9 ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ 𝐴 → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ {∅, {∅}})
18 elpri 3606 . . . . . . . . 9 ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ {∅, {∅}} → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅}))
1915, 17, 183syl 17 . . . . . . . 8 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅}))
20 eleq1 2233 . . . . . . . . . 10 ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅} → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ 𝐴 ↔ {∅} ∈ 𝐴))
2115, 20syl5ibcom 154 . . . . . . . . 9 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅} → {∅} ∈ 𝐴))
2221orim2d 783 . . . . . . . 8 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅}) → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ {∅} ∈ 𝐴)))
2319, 22mpd 13 . . . . . . 7 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ {∅} ∈ 𝐴))
24 acexmidlem.b . . . . . . . . . . . . . 14 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
25 pp0ex 4175 . . . . . . . . . . . . . . 15 {∅, {∅}} ∈ V
2625rabex 4133 . . . . . . . . . . . . . 14 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ∈ V
2724, 26eqeltri 2243 . . . . . . . . . . . . 13 𝐵 ∈ V
2827prid2 3690 . . . . . . . . . . . 12 𝐵 ∈ {𝐴, 𝐵}
2928, 6eleqtrri 2246 . . . . . . . . . . 11 𝐵𝐶
30 eleq1 2233 . . . . . . . . . . . . . . 15 (𝑧 = 𝐵 → (𝑧𝑢𝐵𝑢))
3130anbi1d 462 . . . . . . . . . . . . . 14 (𝑧 = 𝐵 → ((𝑧𝑢𝑣𝑢) ↔ (𝐵𝑢𝑣𝑢)))
3231rexbidv 2471 . . . . . . . . . . . . 13 (𝑧 = 𝐵 → (∃𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑢𝑦 (𝐵𝑢𝑣𝑢)))
3332reueqd 2675 . . . . . . . . . . . 12 (𝑧 = 𝐵 → (∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃!𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)))
3433rspcv 2830 . . . . . . . . . . 11 (𝐵𝐶 → (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∃!𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)))
3529, 34ax-mp 5 . . . . . . . . . 10 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∃!𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢))
36 riotacl 5823 . . . . . . . . . 10 (∃!𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢) → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ 𝐵)
3735, 36syl 14 . . . . . . . . 9 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ 𝐵)
38 elrabi 2883 . . . . . . . . . 10 ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ {∅, {∅}})
3938, 24eleq2s 2265 . . . . . . . . 9 ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ 𝐵 → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ {∅, {∅}})
40 elpri 3606 . . . . . . . . 9 ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ {∅, {∅}} → ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))
4137, 39, 403syl 17 . . . . . . . 8 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))
42 eleq1 2233 . . . . . . . . . 10 ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ → ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ 𝐵 ↔ ∅ ∈ 𝐵))
4337, 42syl5ibcom 154 . . . . . . . . 9 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ → ∅ ∈ 𝐵))
4443orim1d 782 . . . . . . . 8 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}) → (∅ ∈ 𝐵 ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
4541, 44mpd 13 . . . . . . 7 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (∅ ∈ 𝐵 ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))
4623, 45jca 304 . . . . . 6 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ {∅} ∈ 𝐴) ∧ (∅ ∈ 𝐵 ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
47 anddi 816 . . . . . 6 ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ {∅} ∈ 𝐴) ∧ (∅ ∈ 𝐵 ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ↔ ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ (({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∨ ({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
4846, 47sylib 121 . . . . 5 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ (({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∨ ({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
49 simpl 108 . . . . . . 7 (({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) → {∅} ∈ 𝐴)
50 simpl 108 . . . . . . 7 (({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}) → {∅} ∈ 𝐴)
5149, 50jaoi 711 . . . . . 6 ((({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∨ ({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) → {∅} ∈ 𝐴)
5251orim2i 756 . . . . 5 (((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ (({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∨ ({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))) → ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ {∅} ∈ 𝐴))
5348, 52syl 14 . . . 4 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ {∅} ∈ 𝐴))
5453orcomd 724 . . 3 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
55 simpr 109 . . . . 5 (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) → ∅ ∈ 𝐵)
5655orim1i 755 . . . 4 ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) → (∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
5756orim2i 756 . . 3 (({∅} ∈ 𝐴 ∨ (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))) → ({∅} ∈ 𝐴 ∨ (∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
5854, 57syl 14 . 2 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ (∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
59 3orass 976 . 2 (({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ↔ ({∅} ∈ 𝐴 ∨ (∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
6058, 59sylibr 133 1 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703  w3o 972   = wceq 1348  wcel 2141  wral 2448  wrex 2449  ∃!wreu 2450  {crab 2452  Vcvv 2730  c0 3414  {csn 3583  {cpr 3584  Oncon0 4348  crio 5808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356  df-iota 5160  df-riota 5809
This theorem is referenced by:  acexmidlem1  5849
  Copyright terms: Public domain W3C validator