ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemcase GIF version

Theorem acexmidlemcase 5819
Description: Lemma for acexmid 5823. Here we divide the proof into cases (based on the disjunction implicit in an unordered pair, not the sort of case elimination which relies on excluded middle).

The cases are (1) the choice function evaluated at 𝐴 equals {∅}, (2) the choice function evaluated at 𝐵 equals , and (3) the choice function evaluated at 𝐴 equals and the choice function evaluated at 𝐵 equals {∅}.

Because of the way we represent the choice function 𝑦, the choice function evaluated at 𝐴 is (𝑣𝐴𝑢𝑦(𝐴𝑢𝑣𝑢)) and the choice function evaluated at 𝐵 is (𝑣𝐵𝑢𝑦(𝐵𝑢𝑣𝑢)). Other than the difference in notation these work just as (𝑦𝐴) and (𝑦𝐵) would if 𝑦 were a function as defined by df-fun 5172.

Although it isn't exactly about the division into cases, it is also convenient for this lemma to also include the step that if the choice function evaluated at 𝐴 equals {∅}, then {∅} ∈ 𝐴 and likewise for 𝐵.

(Contributed by Jim Kingdon, 7-Aug-2019.)

Hypotheses
Ref Expression
acexmidlem.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
acexmidlem.b 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
acexmidlem.c 𝐶 = {𝐴, 𝐵}
Assertion
Ref Expression
acexmidlemcase (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑣,𝑢   𝑥,𝐶,𝑦,𝑧,𝑣,𝑢   𝜑,𝑥,𝑦,𝑧,𝑣,𝑢

Proof of Theorem acexmidlemcase
StepHypRef Expression
1 acexmidlem.a . . . . . . . . . . . . . 14 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
2 onsucelsucexmidlem 4488 . . . . . . . . . . . . . 14 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∈ On
31, 2eqeltri 2230 . . . . . . . . . . . . 13 𝐴 ∈ On
4 prid1g 3663 . . . . . . . . . . . . 13 (𝐴 ∈ On → 𝐴 ∈ {𝐴, 𝐵})
53, 4ax-mp 5 . . . . . . . . . . . 12 𝐴 ∈ {𝐴, 𝐵}
6 acexmidlem.c . . . . . . . . . . . 12 𝐶 = {𝐴, 𝐵}
75, 6eleqtrri 2233 . . . . . . . . . . 11 𝐴𝐶
8 eleq1 2220 . . . . . . . . . . . . . . 15 (𝑧 = 𝐴 → (𝑧𝑢𝐴𝑢))
98anbi1d 461 . . . . . . . . . . . . . 14 (𝑧 = 𝐴 → ((𝑧𝑢𝑣𝑢) ↔ (𝐴𝑢𝑣𝑢)))
109rexbidv 2458 . . . . . . . . . . . . 13 (𝑧 = 𝐴 → (∃𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑢𝑦 (𝐴𝑢𝑣𝑢)))
1110reueqd 2662 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃!𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)))
1211rspcv 2812 . . . . . . . . . . 11 (𝐴𝐶 → (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∃!𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)))
137, 12ax-mp 5 . . . . . . . . . 10 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∃!𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢))
14 riotacl 5794 . . . . . . . . . 10 (∃!𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢) → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ 𝐴)
1513, 14syl 14 . . . . . . . . 9 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ 𝐴)
16 elrabi 2865 . . . . . . . . . 10 ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ {∅, {∅}})
1716, 1eleq2s 2252 . . . . . . . . 9 ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ 𝐴 → (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ {∅, {∅}})
18 elpri 3583 . . . . . . . . 9 ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ {∅, {∅}} → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅}))
1915, 17, 183syl 17 . . . . . . . 8 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅}))
20 eleq1 2220 . . . . . . . . . 10 ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅} → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) ∈ 𝐴 ↔ {∅} ∈ 𝐴))
2115, 20syl5ibcom 154 . . . . . . . . 9 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅} → {∅} ∈ 𝐴))
2221orim2d 778 . . . . . . . 8 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = {∅}) → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ {∅} ∈ 𝐴)))
2319, 22mpd 13 . . . . . . 7 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ {∅} ∈ 𝐴))
24 acexmidlem.b . . . . . . . . . . . . . 14 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
25 pp0ex 4150 . . . . . . . . . . . . . . 15 {∅, {∅}} ∈ V
2625rabex 4108 . . . . . . . . . . . . . 14 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ∈ V
2724, 26eqeltri 2230 . . . . . . . . . . . . 13 𝐵 ∈ V
2827prid2 3666 . . . . . . . . . . . 12 𝐵 ∈ {𝐴, 𝐵}
2928, 6eleqtrri 2233 . . . . . . . . . . 11 𝐵𝐶
30 eleq1 2220 . . . . . . . . . . . . . . 15 (𝑧 = 𝐵 → (𝑧𝑢𝐵𝑢))
3130anbi1d 461 . . . . . . . . . . . . . 14 (𝑧 = 𝐵 → ((𝑧𝑢𝑣𝑢) ↔ (𝐵𝑢𝑣𝑢)))
3231rexbidv 2458 . . . . . . . . . . . . 13 (𝑧 = 𝐵 → (∃𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑢𝑦 (𝐵𝑢𝑣𝑢)))
3332reueqd 2662 . . . . . . . . . . . 12 (𝑧 = 𝐵 → (∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃!𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)))
3433rspcv 2812 . . . . . . . . . . 11 (𝐵𝐶 → (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∃!𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)))
3529, 34ax-mp 5 . . . . . . . . . 10 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ∃!𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢))
36 riotacl 5794 . . . . . . . . . 10 (∃!𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢) → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ 𝐵)
3735, 36syl 14 . . . . . . . . 9 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ 𝐵)
38 elrabi 2865 . . . . . . . . . 10 ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ {∅, {∅}})
3938, 24eleq2s 2252 . . . . . . . . 9 ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ 𝐵 → (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ {∅, {∅}})
40 elpri 3583 . . . . . . . . 9 ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ {∅, {∅}} → ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))
4137, 39, 403syl 17 . . . . . . . 8 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))
42 eleq1 2220 . . . . . . . . . 10 ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ → ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) ∈ 𝐵 ↔ ∅ ∈ 𝐵))
4337, 42syl5ibcom 154 . . . . . . . . 9 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ → ∅ ∈ 𝐵))
4443orim1d 777 . . . . . . . 8 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (((𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = ∅ ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}) → (∅ ∈ 𝐵 ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
4541, 44mpd 13 . . . . . . 7 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (∅ ∈ 𝐵 ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))
4623, 45jca 304 . . . . . 6 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ {∅} ∈ 𝐴) ∧ (∅ ∈ 𝐵 ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
47 anddi 811 . . . . . 6 ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∨ {∅} ∈ 𝐴) ∧ (∅ ∈ 𝐵 ∨ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ↔ ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ (({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∨ ({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
4846, 47sylib 121 . . . . 5 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ (({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∨ ({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
49 simpl 108 . . . . . . 7 (({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) → {∅} ∈ 𝐴)
50 simpl 108 . . . . . . 7 (({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}) → {∅} ∈ 𝐴)
5149, 50jaoi 706 . . . . . 6 ((({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∨ ({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) → {∅} ∈ 𝐴)
5251orim2i 751 . . . . 5 (((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ (({∅} ∈ 𝐴 ∧ ∅ ∈ 𝐵) ∨ ({∅} ∈ 𝐴 ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))) → ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ {∅} ∈ 𝐴))
5348, 52syl 14 . . . 4 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ∨ {∅} ∈ 𝐴))
5453orcomd 719 . . 3 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
55 simpr 109 . . . . 5 (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) → ∅ ∈ 𝐵)
5655orim1i 750 . . . 4 ((((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) → (∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
5756orim2i 751 . . 3 (({∅} ∈ 𝐴 ∨ (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ ∅ ∈ 𝐵) ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))) → ({∅} ∈ 𝐴 ∨ (∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
5854, 57syl 14 . 2 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ (∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
59 3orass 966 . 2 (({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) ↔ ({∅} ∈ 𝐴 ∨ (∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}))))
6058, 59sylibr 133 1 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  w3o 962   = wceq 1335  wcel 2128  wral 2435  wrex 2436  ∃!wreu 2437  {crab 2439  Vcvv 2712  c0 3394  {csn 3560  {cpr 3561  Oncon0 4323  crio 5779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4135
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-tr 4063  df-iord 4326  df-on 4328  df-suc 4331  df-iota 5135  df-riota 5780
This theorem is referenced by:  acexmidlem1  5820
  Copyright terms: Public domain W3C validator