Proof of Theorem nnm00
| Step | Hyp | Ref
| Expression |
| 1 | | simpl 109 |
. . . . . . 7
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| 2 | | simpl 109 |
. . . . . . 7
⊢ ((𝐴 = ∅ ∧ ∅ ∈
𝐵) → 𝐴 = ∅) |
| 3 | 1, 2 | jaoi 717 |
. . . . . 6
⊢ (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈
𝐵)) → 𝐴 = ∅) |
| 4 | 3 | orcd 734 |
. . . . 5
⊢ (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈
𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅)) |
| 5 | 4 | a1i 9 |
. . . 4
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈
𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅))) |
| 6 | | simpr 110 |
. . . . . . 7
⊢ ((∅
∈ 𝐴 ∧ 𝐵 = ∅) → 𝐵 = ∅) |
| 7 | 6 | olcd 735 |
. . . . . 6
⊢ ((∅
∈ 𝐴 ∧ 𝐵 = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅)) |
| 8 | 7 | a1i 9 |
. . . . 5
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅
∈ 𝐴 ∧ 𝐵 = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅))) |
| 9 | | simplr 528 |
. . . . . . 7
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅
∈ 𝐴 ∧ ∅
∈ 𝐵)) → (𝐴 ·o 𝐵) = ∅) |
| 10 | | nnmordi 6574 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅
∈ 𝐴) → (∅
∈ 𝐵 → (𝐴 ·o ∅)
∈ (𝐴
·o 𝐵))) |
| 11 | 10 | expimpd 363 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) →
((∅ ∈ 𝐴 ∧
∅ ∈ 𝐵) →
(𝐴 ·o
∅) ∈ (𝐴
·o 𝐵))) |
| 12 | 11 | ancoms 268 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
((∅ ∈ 𝐴 ∧
∅ ∈ 𝐵) →
(𝐴 ·o
∅) ∈ (𝐴
·o 𝐵))) |
| 13 | | nnm0 6533 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ω → (𝐴 ·o ∅) =
∅) |
| 14 | 13 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o ∅) =
∅) |
| 15 | 14 | eleq1d 2265 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o ∅)
∈ (𝐴
·o 𝐵)
↔ ∅ ∈ (𝐴
·o 𝐵))) |
| 16 | 12, 15 | sylibd 149 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
((∅ ∈ 𝐴 ∧
∅ ∈ 𝐵) →
∅ ∈ (𝐴
·o 𝐵))) |
| 17 | 16 | adantr 276 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅
∈ 𝐴 ∧ ∅
∈ 𝐵) → ∅
∈ (𝐴
·o 𝐵))) |
| 18 | 17 | imp 124 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅
∈ 𝐴 ∧ ∅
∈ 𝐵)) → ∅
∈ (𝐴
·o 𝐵)) |
| 19 | | n0i 3456 |
. . . . . . . 8
⊢ (∅
∈ (𝐴
·o 𝐵)
→ ¬ (𝐴
·o 𝐵) =
∅) |
| 20 | 18, 19 | syl 14 |
. . . . . . 7
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅
∈ 𝐴 ∧ ∅
∈ 𝐵)) → ¬
(𝐴 ·o
𝐵) =
∅) |
| 21 | 9, 20 | pm2.21dd 621 |
. . . . . 6
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅
∈ 𝐴 ∧ ∅
∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅)) |
| 22 | 21 | ex 115 |
. . . . 5
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅
∈ 𝐴 ∧ ∅
∈ 𝐵) → (𝐴 = ∅ ∨ 𝐵 = ∅))) |
| 23 | 8, 22 | jaod 718 |
. . . 4
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((∅
∈ 𝐴 ∧ 𝐵 = ∅) ∨ (∅ ∈
𝐴 ∧ ∅ ∈
𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅))) |
| 24 | | 0elnn 4655 |
. . . . . . 7
⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈
𝐴)) |
| 25 | | 0elnn 4655 |
. . . . . . 7
⊢ (𝐵 ∈ ω → (𝐵 = ∅ ∨ ∅ ∈
𝐵)) |
| 26 | 24, 25 | anim12i 338 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = ∅ ∨ ∅ ∈
𝐴) ∧ (𝐵 = ∅ ∨ ∅ ∈ 𝐵))) |
| 27 | | anddi 822 |
. . . . . 6
⊢ (((𝐴 = ∅ ∨ ∅ ∈
𝐴) ∧ (𝐵 = ∅ ∨ ∅ ∈ 𝐵)) ↔ (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) ∨ ((∅ ∈ 𝐴 ∧ 𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)))) |
| 28 | 26, 27 | sylib 122 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈
𝐵)) ∨ ((∅ ∈
𝐴 ∧ 𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)))) |
| 29 | 28 | adantr 276 |
. . . 4
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈
𝐵)) ∨ ((∅ ∈
𝐴 ∧ 𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)))) |
| 30 | 5, 23, 29 | mpjaod 719 |
. . 3
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅)) |
| 31 | 30 | ex 115 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ → (𝐴 = ∅ ∨ 𝐵 = ∅))) |
| 32 | | oveq1 5929 |
. . . . . 6
⊢ (𝐴 = ∅ → (𝐴 ·o 𝐵) = (∅
·o 𝐵)) |
| 33 | | nnm0r 6537 |
. . . . . 6
⊢ (𝐵 ∈ ω → (∅
·o 𝐵) =
∅) |
| 34 | 32, 33 | sylan9eqr 2251 |
. . . . 5
⊢ ((𝐵 ∈ ω ∧ 𝐴 = ∅) → (𝐴 ·o 𝐵) = ∅) |
| 35 | 34 | ex 115 |
. . . 4
⊢ (𝐵 ∈ ω → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅)) |
| 36 | 35 | adantl 277 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅)) |
| 37 | | oveq2 5930 |
. . . . . 6
⊢ (𝐵 = ∅ → (𝐴 ·o 𝐵) = (𝐴 ·o
∅)) |
| 38 | 37, 13 | sylan9eqr 2251 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅) |
| 39 | 38 | ex 115 |
. . . 4
⊢ (𝐴 ∈ ω → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅)) |
| 40 | 39 | adantr 276 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅)) |
| 41 | 36, 40 | jaod 718 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅)) |
| 42 | 31, 41 | impbid 129 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))) |