ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm00 GIF version

Theorem nnm00 6674
Description: The product of two natural numbers is zero iff at least one of them is zero. (Contributed by Jim Kingdon, 11-Nov-2004.)
Assertion
Ref Expression
nnm00 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))

Proof of Theorem nnm00
StepHypRef Expression
1 simpl 109 . . . . . . 7 ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐴 = ∅)
2 simpl 109 . . . . . . 7 ((𝐴 = ∅ ∧ ∅ ∈ 𝐵) → 𝐴 = ∅)
31, 2jaoi 721 . . . . . 6 (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) → 𝐴 = ∅)
43orcd 738 . . . . 5 (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅))
54a1i 9 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
6 simpr 110 . . . . . . 7 ((∅ ∈ 𝐴𝐵 = ∅) → 𝐵 = ∅)
76olcd 739 . . . . . 6 ((∅ ∈ 𝐴𝐵 = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅))
87a1i 9 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅ ∈ 𝐴𝐵 = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
9 simplr 528 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → (𝐴 ·o 𝐵) = ∅)
10 nnmordi 6660 . . . . . . . . . . . . 13 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
1110expimpd 363 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
1211ancoms 268 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
13 nnm0 6619 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
1413adantr 276 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o ∅) = ∅)
1514eleq1d 2298 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵) ↔ ∅ ∈ (𝐴 ·o 𝐵)))
1612, 15sylibd 149 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → ∅ ∈ (𝐴 ·o 𝐵)))
1716adantr 276 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → ∅ ∈ (𝐴 ·o 𝐵)))
1817imp 124 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → ∅ ∈ (𝐴 ·o 𝐵))
19 n0i 3497 . . . . . . . 8 (∅ ∈ (𝐴 ·o 𝐵) → ¬ (𝐴 ·o 𝐵) = ∅)
2018, 19syl 14 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → ¬ (𝐴 ·o 𝐵) = ∅)
219, 20pm2.21dd 623 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅))
2221ex 115 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
238, 22jaod 722 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
24 0elnn 4710 . . . . . . 7 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
25 0elnn 4710 . . . . . . 7 (𝐵 ∈ ω → (𝐵 = ∅ ∨ ∅ ∈ 𝐵))
2624, 25anim12i 338 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ∧ (𝐵 = ∅ ∨ ∅ ∈ 𝐵)))
27 anddi 826 . . . . . 6 (((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ∧ (𝐵 = ∅ ∨ ∅ ∈ 𝐵)) ↔ (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) ∨ ((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))))
2826, 27sylib 122 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) ∨ ((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))))
2928adantr 276 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) ∨ ((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))))
305, 23, 29mpjaod 723 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅))
3130ex 115 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ → (𝐴 = ∅ ∨ 𝐵 = ∅)))
32 oveq1 6007 . . . . . 6 (𝐴 = ∅ → (𝐴 ·o 𝐵) = (∅ ·o 𝐵))
33 nnm0r 6623 . . . . . 6 (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅)
3432, 33sylan9eqr 2284 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴 = ∅) → (𝐴 ·o 𝐵) = ∅)
3534ex 115 . . . 4 (𝐵 ∈ ω → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
3635adantl 277 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
37 oveq2 6008 . . . . . 6 (𝐵 = ∅ → (𝐴 ·o 𝐵) = (𝐴 ·o ∅))
3837, 13sylan9eqr 2284 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅)
3938ex 115 . . . 4 (𝐴 ∈ ω → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
4039adantr 276 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
4136, 40jaod 722 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅))
4231, 41impbid 129 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200  c0 3491  ωcom 4681  (class class class)co 6000   ·o comu 6558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-oadd 6564  df-omul 6565
This theorem is referenced by:  enq0tr  7617  nqnq0pi  7621
  Copyright terms: Public domain W3C validator