ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm00 GIF version

Theorem nnm00 6509
Description: The product of two natural numbers is zero iff at least one of them is zero. (Contributed by Jim Kingdon, 11-Nov-2004.)
Assertion
Ref Expression
nnm00 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))

Proof of Theorem nnm00
StepHypRef Expression
1 simpl 108 . . . . . . 7 ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐴 = ∅)
2 simpl 108 . . . . . . 7 ((𝐴 = ∅ ∧ ∅ ∈ 𝐵) → 𝐴 = ∅)
31, 2jaoi 711 . . . . . 6 (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) → 𝐴 = ∅)
43orcd 728 . . . . 5 (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅))
54a1i 9 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
6 simpr 109 . . . . . . 7 ((∅ ∈ 𝐴𝐵 = ∅) → 𝐵 = ∅)
76olcd 729 . . . . . 6 ((∅ ∈ 𝐴𝐵 = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅))
87a1i 9 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅ ∈ 𝐴𝐵 = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
9 simplr 525 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → (𝐴 ·o 𝐵) = ∅)
10 nnmordi 6495 . . . . . . . . . . . . 13 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
1110expimpd 361 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
1211ancoms 266 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
13 nnm0 6454 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
1413adantr 274 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o ∅) = ∅)
1514eleq1d 2239 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵) ↔ ∅ ∈ (𝐴 ·o 𝐵)))
1612, 15sylibd 148 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → ∅ ∈ (𝐴 ·o 𝐵)))
1716adantr 274 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → ∅ ∈ (𝐴 ·o 𝐵)))
1817imp 123 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → ∅ ∈ (𝐴 ·o 𝐵))
19 n0i 3420 . . . . . . . 8 (∅ ∈ (𝐴 ·o 𝐵) → ¬ (𝐴 ·o 𝐵) = ∅)
2018, 19syl 14 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → ¬ (𝐴 ·o 𝐵) = ∅)
219, 20pm2.21dd 615 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅))
2221ex 114 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
238, 22jaod 712 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
24 0elnn 4603 . . . . . . 7 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
25 0elnn 4603 . . . . . . 7 (𝐵 ∈ ω → (𝐵 = ∅ ∨ ∅ ∈ 𝐵))
2624, 25anim12i 336 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ∧ (𝐵 = ∅ ∨ ∅ ∈ 𝐵)))
27 anddi 816 . . . . . 6 (((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ∧ (𝐵 = ∅ ∨ ∅ ∈ 𝐵)) ↔ (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) ∨ ((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))))
2826, 27sylib 121 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) ∨ ((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))))
2928adantr 274 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) ∨ ((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))))
305, 23, 29mpjaod 713 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅))
3130ex 114 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ → (𝐴 = ∅ ∨ 𝐵 = ∅)))
32 oveq1 5860 . . . . . 6 (𝐴 = ∅ → (𝐴 ·o 𝐵) = (∅ ·o 𝐵))
33 nnm0r 6458 . . . . . 6 (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅)
3432, 33sylan9eqr 2225 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴 = ∅) → (𝐴 ·o 𝐵) = ∅)
3534ex 114 . . . 4 (𝐵 ∈ ω → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
3635adantl 275 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
37 oveq2 5861 . . . . . 6 (𝐵 = ∅ → (𝐴 ·o 𝐵) = (𝐴 ·o ∅))
3837, 13sylan9eqr 2225 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅)
3938ex 114 . . . 4 (𝐴 ∈ ω → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
4039adantr 274 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
4136, 40jaod 712 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅))
4231, 41impbid 128 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  c0 3414  ωcom 4574  (class class class)co 5853   ·o comu 6393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400
This theorem is referenced by:  enq0tr  7396  nqnq0pi  7400
  Copyright terms: Public domain W3C validator