ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm00 GIF version

Theorem nnm00 6629
Description: The product of two natural numbers is zero iff at least one of them is zero. (Contributed by Jim Kingdon, 11-Nov-2004.)
Assertion
Ref Expression
nnm00 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))

Proof of Theorem nnm00
StepHypRef Expression
1 simpl 109 . . . . . . 7 ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐴 = ∅)
2 simpl 109 . . . . . . 7 ((𝐴 = ∅ ∧ ∅ ∈ 𝐵) → 𝐴 = ∅)
31, 2jaoi 718 . . . . . 6 (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) → 𝐴 = ∅)
43orcd 735 . . . . 5 (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅))
54a1i 9 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
6 simpr 110 . . . . . . 7 ((∅ ∈ 𝐴𝐵 = ∅) → 𝐵 = ∅)
76olcd 736 . . . . . 6 ((∅ ∈ 𝐴𝐵 = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅))
87a1i 9 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅ ∈ 𝐴𝐵 = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
9 simplr 528 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → (𝐴 ·o 𝐵) = ∅)
10 nnmordi 6615 . . . . . . . . . . . . 13 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
1110expimpd 363 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
1211ancoms 268 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
13 nnm0 6574 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
1413adantr 276 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o ∅) = ∅)
1514eleq1d 2275 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵) ↔ ∅ ∈ (𝐴 ·o 𝐵)))
1612, 15sylibd 149 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → ∅ ∈ (𝐴 ·o 𝐵)))
1716adantr 276 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → ∅ ∈ (𝐴 ·o 𝐵)))
1817imp 124 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → ∅ ∈ (𝐴 ·o 𝐵))
19 n0i 3470 . . . . . . . 8 (∅ ∈ (𝐴 ·o 𝐵) → ¬ (𝐴 ·o 𝐵) = ∅)
2018, 19syl 14 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → ¬ (𝐴 ·o 𝐵) = ∅)
219, 20pm2.21dd 621 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅))
2221ex 115 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
238, 22jaod 719 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
24 0elnn 4675 . . . . . . 7 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
25 0elnn 4675 . . . . . . 7 (𝐵 ∈ ω → (𝐵 = ∅ ∨ ∅ ∈ 𝐵))
2624, 25anim12i 338 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ∧ (𝐵 = ∅ ∨ ∅ ∈ 𝐵)))
27 anddi 823 . . . . . 6 (((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ∧ (𝐵 = ∅ ∨ ∅ ∈ 𝐵)) ↔ (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) ∨ ((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))))
2826, 27sylib 122 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) ∨ ((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))))
2928adantr 276 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) ∨ ((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))))
305, 23, 29mpjaod 720 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅))
3130ex 115 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ → (𝐴 = ∅ ∨ 𝐵 = ∅)))
32 oveq1 5964 . . . . . 6 (𝐴 = ∅ → (𝐴 ·o 𝐵) = (∅ ·o 𝐵))
33 nnm0r 6578 . . . . . 6 (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅)
3432, 33sylan9eqr 2261 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴 = ∅) → (𝐴 ·o 𝐵) = ∅)
3534ex 115 . . . 4 (𝐵 ∈ ω → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
3635adantl 277 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
37 oveq2 5965 . . . . . 6 (𝐵 = ∅ → (𝐴 ·o 𝐵) = (𝐴 ·o ∅))
3837, 13sylan9eqr 2261 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅)
3938ex 115 . . . 4 (𝐴 ∈ ω → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
4039adantr 276 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
4136, 40jaod 719 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅))
4231, 41impbid 129 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  c0 3464  ωcom 4646  (class class class)co 5957   ·o comu 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-oadd 6519  df-omul 6520
This theorem is referenced by:  enq0tr  7567  nqnq0pi  7571
  Copyright terms: Public domain W3C validator