ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm00 GIF version

Theorem nnm00 6525
Description: The product of two natural numbers is zero iff at least one of them is zero. (Contributed by Jim Kingdon, 11-Nov-2004.)
Assertion
Ref Expression
nnm00 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))

Proof of Theorem nnm00
StepHypRef Expression
1 simpl 109 . . . . . . 7 ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐴 = ∅)
2 simpl 109 . . . . . . 7 ((𝐴 = ∅ ∧ ∅ ∈ 𝐵) → 𝐴 = ∅)
31, 2jaoi 716 . . . . . 6 (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) → 𝐴 = ∅)
43orcd 733 . . . . 5 (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅))
54a1i 9 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
6 simpr 110 . . . . . . 7 ((∅ ∈ 𝐴𝐵 = ∅) → 𝐵 = ∅)
76olcd 734 . . . . . 6 ((∅ ∈ 𝐴𝐵 = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅))
87a1i 9 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅ ∈ 𝐴𝐵 = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
9 simplr 528 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → (𝐴 ·o 𝐵) = ∅)
10 nnmordi 6511 . . . . . . . . . . . . 13 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
1110expimpd 363 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
1211ancoms 268 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
13 nnm0 6470 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
1413adantr 276 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o ∅) = ∅)
1514eleq1d 2246 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵) ↔ ∅ ∈ (𝐴 ·o 𝐵)))
1612, 15sylibd 149 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → ∅ ∈ (𝐴 ·o 𝐵)))
1716adantr 276 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → ∅ ∈ (𝐴 ·o 𝐵)))
1817imp 124 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → ∅ ∈ (𝐴 ·o 𝐵))
19 n0i 3428 . . . . . . . 8 (∅ ∈ (𝐴 ·o 𝐵) → ¬ (𝐴 ·o 𝐵) = ∅)
2018, 19syl 14 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → ¬ (𝐴 ·o 𝐵) = ∅)
219, 20pm2.21dd 620 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅))
2221ex 115 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
238, 22jaod 717 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
24 0elnn 4615 . . . . . . 7 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
25 0elnn 4615 . . . . . . 7 (𝐵 ∈ ω → (𝐵 = ∅ ∨ ∅ ∈ 𝐵))
2624, 25anim12i 338 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ∧ (𝐵 = ∅ ∨ ∅ ∈ 𝐵)))
27 anddi 821 . . . . . 6 (((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ∧ (𝐵 = ∅ ∨ ∅ ∈ 𝐵)) ↔ (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) ∨ ((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))))
2826, 27sylib 122 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) ∨ ((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))))
2928adantr 276 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) ∨ ((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))))
305, 23, 29mpjaod 718 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅))
3130ex 115 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ → (𝐴 = ∅ ∨ 𝐵 = ∅)))
32 oveq1 5876 . . . . . 6 (𝐴 = ∅ → (𝐴 ·o 𝐵) = (∅ ·o 𝐵))
33 nnm0r 6474 . . . . . 6 (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅)
3432, 33sylan9eqr 2232 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴 = ∅) → (𝐴 ·o 𝐵) = ∅)
3534ex 115 . . . 4 (𝐵 ∈ ω → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
3635adantl 277 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
37 oveq2 5877 . . . . . 6 (𝐵 = ∅ → (𝐴 ·o 𝐵) = (𝐴 ·o ∅))
3837, 13sylan9eqr 2232 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅)
3938ex 115 . . . 4 (𝐴 ∈ ω → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
4039adantr 276 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
4136, 40jaod 717 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅))
4231, 41impbid 129 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148  c0 3422  ωcom 4586  (class class class)co 5869   ·o comu 6409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-oadd 6415  df-omul 6416
This theorem is referenced by:  enq0tr  7424  nqnq0pi  7428
  Copyright terms: Public domain W3C validator