ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm00 GIF version

Theorem nnm00 6606
Description: The product of two natural numbers is zero iff at least one of them is zero. (Contributed by Jim Kingdon, 11-Nov-2004.)
Assertion
Ref Expression
nnm00 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))

Proof of Theorem nnm00
StepHypRef Expression
1 simpl 109 . . . . . . 7 ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐴 = ∅)
2 simpl 109 . . . . . . 7 ((𝐴 = ∅ ∧ ∅ ∈ 𝐵) → 𝐴 = ∅)
31, 2jaoi 717 . . . . . 6 (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) → 𝐴 = ∅)
43orcd 734 . . . . 5 (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅))
54a1i 9 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
6 simpr 110 . . . . . . 7 ((∅ ∈ 𝐴𝐵 = ∅) → 𝐵 = ∅)
76olcd 735 . . . . . 6 ((∅ ∈ 𝐴𝐵 = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅))
87a1i 9 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅ ∈ 𝐴𝐵 = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
9 simplr 528 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → (𝐴 ·o 𝐵) = ∅)
10 nnmordi 6592 . . . . . . . . . . . . 13 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
1110expimpd 363 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
1211ancoms 268 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
13 nnm0 6551 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
1413adantr 276 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o ∅) = ∅)
1514eleq1d 2273 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵) ↔ ∅ ∈ (𝐴 ·o 𝐵)))
1612, 15sylibd 149 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → ∅ ∈ (𝐴 ·o 𝐵)))
1716adantr 276 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → ∅ ∈ (𝐴 ·o 𝐵)))
1817imp 124 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → ∅ ∈ (𝐴 ·o 𝐵))
19 n0i 3465 . . . . . . . 8 (∅ ∈ (𝐴 ·o 𝐵) → ¬ (𝐴 ·o 𝐵) = ∅)
2018, 19syl 14 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → ¬ (𝐴 ·o 𝐵) = ∅)
219, 20pm2.21dd 621 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) ∧ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅))
2221ex 115 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
238, 22jaod 718 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) → (𝐴 = ∅ ∨ 𝐵 = ∅)))
24 0elnn 4665 . . . . . . 7 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
25 0elnn 4665 . . . . . . 7 (𝐵 ∈ ω → (𝐵 = ∅ ∨ ∅ ∈ 𝐵))
2624, 25anim12i 338 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ∧ (𝐵 = ∅ ∨ ∅ ∈ 𝐵)))
27 anddi 822 . . . . . 6 (((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ∧ (𝐵 = ∅ ∨ ∅ ∈ 𝐵)) ↔ (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) ∨ ((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))))
2826, 27sylib 122 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) ∨ ((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))))
2928adantr 276 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ ∅ ∈ 𝐵)) ∨ ((∅ ∈ 𝐴𝐵 = ∅) ∨ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))))
305, 23, 29mpjaod 719 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·o 𝐵) = ∅) → (𝐴 = ∅ ∨ 𝐵 = ∅))
3130ex 115 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ → (𝐴 = ∅ ∨ 𝐵 = ∅)))
32 oveq1 5941 . . . . . 6 (𝐴 = ∅ → (𝐴 ·o 𝐵) = (∅ ·o 𝐵))
33 nnm0r 6555 . . . . . 6 (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅)
3432, 33sylan9eqr 2259 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴 = ∅) → (𝐴 ·o 𝐵) = ∅)
3534ex 115 . . . 4 (𝐵 ∈ ω → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
3635adantl 277 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = ∅ → (𝐴 ·o 𝐵) = ∅))
37 oveq2 5942 . . . . . 6 (𝐵 = ∅ → (𝐴 ·o 𝐵) = (𝐴 ·o ∅))
3837, 13sylan9eqr 2259 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅)
3938ex 115 . . . 4 (𝐴 ∈ ω → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
4039adantr 276 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅))
4136, 40jaod 718 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅))
4231, 41impbid 129 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1372  wcel 2175  c0 3459  ωcom 4636  (class class class)co 5934   ·o comu 6490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-oadd 6496  df-omul 6497
This theorem is referenced by:  enq0tr  7529  nqnq0pi  7533
  Copyright terms: Public domain W3C validator