ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funun GIF version

Theorem funun 5175
Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
funun (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))

Proof of Theorem funun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funrel 5148 . . . . 5 (Fun 𝐹 → Rel 𝐹)
2 funrel 5148 . . . . 5 (Fun 𝐺 → Rel 𝐺)
31, 2anim12i 336 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → (Rel 𝐹 ∧ Rel 𝐺))
4 relun 4664 . . . 4 (Rel (𝐹𝐺) ↔ (Rel 𝐹 ∧ Rel 𝐺))
53, 4sylibr 133 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → Rel (𝐹𝐺))
65adantr 274 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Rel (𝐹𝐺))
7 elun 3222 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
8 elun 3222 . . . . . . . 8 (⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺) ↔ (⟨𝑥, 𝑧⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑧⟩ ∈ 𝐺))
97, 8anbi12i 456 . . . . . . 7 ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑦⟩ ∈ 𝐺) ∧ (⟨𝑥, 𝑧⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
10 anddi 811 . . . . . . 7 (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑦⟩ ∈ 𝐺) ∧ (⟨𝑥, 𝑧⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ↔ (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
119, 10bitri 183 . . . . . 6 ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) ↔ (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
12 disj1 3418 . . . . . . . . . . . . 13 ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ ∀𝑥(𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺))
1312biimpi 119 . . . . . . . . . . . 12 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ∀𝑥(𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺))
141319.21bi 1538 . . . . . . . . . . 11 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺))
15 imnan 680 . . . . . . . . . . 11 ((𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺) ↔ ¬ (𝑥 ∈ dom 𝐹𝑥 ∈ dom 𝐺))
1614, 15sylib 121 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (𝑥 ∈ dom 𝐹𝑥 ∈ dom 𝐺))
17 vex 2692 . . . . . . . . . . . 12 𝑥 ∈ V
18 vex 2692 . . . . . . . . . . . 12 𝑦 ∈ V
1917, 18opeldm 4750 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐹)
20 vex 2692 . . . . . . . . . . . 12 𝑧 ∈ V
2117, 20opeldm 4750 . . . . . . . . . . 11 (⟨𝑥, 𝑧⟩ ∈ 𝐺𝑥 ∈ dom 𝐺)
2219, 21anim12i 336 . . . . . . . . . 10 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (𝑥 ∈ dom 𝐹𝑥 ∈ dom 𝐺))
2316, 22nsyl 618 . . . . . . . . 9 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))
24 orel2 716 . . . . . . . . 9 (¬ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹)))
2523, 24syl 14 . . . . . . . 8 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹)))
2614con2d 614 . . . . . . . . . . 11 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑥 ∈ dom 𝐺 → ¬ 𝑥 ∈ dom 𝐹))
27 imnan 680 . . . . . . . . . . 11 ((𝑥 ∈ dom 𝐺 → ¬ 𝑥 ∈ dom 𝐹) ↔ ¬ (𝑥 ∈ dom 𝐺𝑥 ∈ dom 𝐹))
2826, 27sylib 121 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (𝑥 ∈ dom 𝐺𝑥 ∈ dom 𝐹))
2917, 18opeldm 4750 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝐺𝑥 ∈ dom 𝐺)
3017, 20opeldm 4750 . . . . . . . . . . 11 (⟨𝑥, 𝑧⟩ ∈ 𝐹𝑥 ∈ dom 𝐹)
3129, 30anim12i 336 . . . . . . . . . 10 ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → (𝑥 ∈ dom 𝐺𝑥 ∈ dom 𝐹))
3228, 31nsyl 618 . . . . . . . . 9 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹))
33 orel1 715 . . . . . . . . 9 (¬ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → (((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
3432, 33syl 14 . . . . . . . 8 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
3525, 34orim12d 776 . . . . . . 7 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ((((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
3635adantl 275 . . . . . 6 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
3711, 36syl5bi 151 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
38 dffun4 5142 . . . . . . . . . 10 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
3938simprbi 273 . . . . . . . . 9 (Fun 𝐹 → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
403919.21bi 1538 . . . . . . . 8 (Fun 𝐹 → ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
414019.21bbi 1539 . . . . . . 7 (Fun 𝐹 → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
42 dffun4 5142 . . . . . . . . . 10 (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧)))
4342simprbi 273 . . . . . . . . 9 (Fun 𝐺 → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧))
444319.21bi 1538 . . . . . . . 8 (Fun 𝐺 → ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧))
454419.21bbi 1539 . . . . . . 7 (Fun 𝐺 → ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧))
4641, 45jaao 709 . . . . . 6 ((Fun 𝐹 ∧ Fun 𝐺) → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → 𝑦 = 𝑧))
4746adantr 274 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → 𝑦 = 𝑧))
4837, 47syld 45 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧))
4948alrimiv 1847 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ∀𝑧((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧))
5049alrimivv 1848 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧))
51 dffun4 5142 . 2 (Fun (𝐹𝐺) ↔ (Rel (𝐹𝐺) ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧)))
526, 50, 51sylanbrc 414 1 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  wal 1330   = wceq 1332  wcel 1481  cun 3074  cin 3075  c0 3368  cop 3535  dom cdm 4547  Rel wrel 4552  Fun wfun 5125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-id 4223  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-fun 5133
This theorem is referenced by:  funprg  5181  funtpg  5182  funtp  5184  fnun  5237  fvun1  5495  sbthlem7  6859  sbthlemi8  6860  casefun  6978  caseinj  6982  djufun  6997  djuinj  6999  exmidfodomrlemim  7074  setsfun  12033  setsfun0  12034  strleund  12086  strleun  12087
  Copyright terms: Public domain W3C validator