| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > annimdc | GIF version | ||
| Description: Express conjunction in terms of implication. The forward direction, annimim 687, is valid for all propositions, but as an equivalence, it requires a decidability condition. (Contributed by Jim Kingdon, 25-Apr-2018.) | 
| Ref | Expression | 
|---|---|
| annimdc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imandc 890 | . . . 4 ⊢ (DECID 𝜓 → ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))) | |
| 2 | 1 | adantl 277 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))) | 
| 3 | dcim 842 | . . . . 5 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 → 𝜓))) | |
| 4 | 3 | imp 124 | . . . 4 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → DECID (𝜑 → 𝜓)) | 
| 5 | dcn 843 | . . . . 5 ⊢ (DECID 𝜓 → DECID ¬ 𝜓) | |
| 6 | dcan 935 | . . . . 5 ⊢ ((DECID 𝜑 ∧ DECID ¬ 𝜓) → DECID (𝜑 ∧ ¬ 𝜓)) | |
| 7 | 5, 6 | sylan2 286 | . . . 4 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → DECID (𝜑 ∧ ¬ 𝜓)) | 
| 8 | con2bidc 876 | . . . 4 ⊢ (DECID (𝜑 → 𝜓) → (DECID (𝜑 ∧ ¬ 𝜓) → (((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) ↔ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓))))) | |
| 9 | 4, 7, 8 | sylc 62 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) ↔ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)))) | 
| 10 | 2, 9 | mpbid 147 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓))) | 
| 11 | 10 | ex 115 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)))) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 | 
| This theorem is referenced by: xordidc 1410 | 
| Copyright terms: Public domain | W3C validator |