ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exanaliim GIF version

Theorem exanaliim 1640
Description: A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
Assertion
Ref Expression
exanaliim (∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑𝜓))

Proof of Theorem exanaliim
StepHypRef Expression
1 annimim 681 . . 3 ((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
21eximi 1593 . 2 (∃𝑥(𝜑 ∧ ¬ 𝜓) → ∃𝑥 ¬ (𝜑𝜓))
3 exnalim 1639 . 2 (∃𝑥 ¬ (𝜑𝜓) → ¬ ∀𝑥(𝜑𝜓))
42, 3syl 14 1 (∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wal 1346  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454
This theorem is referenced by:  rexnalim  2459  nssr  3207  nssssr  4207  brprcneu  5489
  Copyright terms: Public domain W3C validator