Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exanaliim | GIF version |
Description: A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.) |
Ref | Expression |
---|---|
exanaliim | ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | annimim 681 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 → 𝜓)) | |
2 | 1 | eximi 1593 | . 2 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) → ∃𝑥 ¬ (𝜑 → 𝜓)) |
3 | exnalim 1639 | . 2 ⊢ (∃𝑥 ¬ (𝜑 → 𝜓) → ¬ ∀𝑥(𝜑 → 𝜓)) | |
4 | 2, 3 | syl 14 | 1 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∀wal 1346 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 |
This theorem is referenced by: rexnalim 2459 nssr 3207 nssssr 4207 brprcneu 5489 |
Copyright terms: Public domain | W3C validator |