ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exanaliim GIF version

Theorem exanaliim 1671
Description: A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
Assertion
Ref Expression
exanaliim (∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑𝜓))

Proof of Theorem exanaliim
StepHypRef Expression
1 annimim 688 . . 3 ((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
21eximi 1624 . 2 (∃𝑥(𝜑 ∧ ¬ 𝜓) → ∃𝑥 ¬ (𝜑𝜓))
3 exnalim 1670 . 2 (∃𝑥 ¬ (𝜑𝜓) → ¬ ∀𝑥(𝜑𝜓))
42, 3syl 14 1 (∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1371  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485
This theorem is referenced by:  rexnalim  2496  nssr  3257  nssssr  4274  brprcneu  5582
  Copyright terms: Public domain W3C validator