Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exanaliim | GIF version |
Description: A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.) |
Ref | Expression |
---|---|
exanaliim | ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | annimim 676 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 → 𝜓)) | |
2 | 1 | eximi 1588 | . 2 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) → ∃𝑥 ¬ (𝜑 → 𝜓)) |
3 | exnalim 1634 | . 2 ⊢ (∃𝑥 ¬ (𝜑 → 𝜓) → ¬ ∀𝑥(𝜑 → 𝜓)) | |
4 | 2, 3 | syl 14 | 1 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 |
This theorem is referenced by: rexnalim 2455 nssr 3202 nssssr 4200 brprcneu 5479 |
Copyright terms: Public domain | W3C validator |