| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exanaliim | GIF version | ||
| Description: A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| exanaliim | ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | annimim 687 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 → 𝜓)) | |
| 2 | 1 | eximi 1614 | . 2 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) → ∃𝑥 ¬ (𝜑 → 𝜓)) |
| 3 | exnalim 1660 | . 2 ⊢ (∃𝑥 ¬ (𝜑 → 𝜓) → ¬ ∀𝑥(𝜑 → 𝜓)) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 |
| This theorem is referenced by: rexnalim 2486 nssr 3244 nssssr 4256 brprcneu 5554 |
| Copyright terms: Public domain | W3C validator |