| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancli | GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.) |
| Ref | Expression |
|---|---|
| ancli.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ancli | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | ancli.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | jca 306 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: pm4.45im 334 mo23 2086 barbari 2147 cesaro 2153 camestros 2154 calemos 2164 swopo 4342 elrnrexdm 5704 uchoice 6204 tfrcl 6431 ixpsnf1o 6804 fidcenumlemrk 7029 subhalfnqq 7500 enq0ref 7519 prarloc 7589 letrp1 8894 p1le 8895 peano2uz2 9452 uzind 9456 uzid 9634 qreccl 9735 fprodsplit1f 11818 lmodfopne 13960 |
| Copyright terms: Public domain | W3C validator |