| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancli | GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.) |
| Ref | Expression |
|---|---|
| ancli.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ancli | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | ancli.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | jca 306 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: pm4.45im 334 mo23 2097 barbari 2158 cesaro 2164 camestros 2165 calemos 2175 swopo 4371 elrnrexdm 5742 uchoice 6246 tfrcl 6473 ixpsnf1o 6846 fidcenumlemrk 7082 subhalfnqq 7562 enq0ref 7581 prarloc 7651 letrp1 8956 p1le 8957 peano2uz2 9515 uzind 9519 uzid 9697 qreccl 9798 fprodsplit1f 12060 lmodfopne 14203 |
| Copyright terms: Public domain | W3C validator |