ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancli GIF version

Theorem ancli 323
Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.)
Hypothesis
Ref Expression
ancli.1 (𝜑𝜓)
Assertion
Ref Expression
ancli (𝜑 → (𝜑𝜓))

Proof of Theorem ancli
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 ancli.1 . 2 (𝜑𝜓)
31, 2jca 306 1 (𝜑 → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  pm4.45im  334  mo23  2079  barbari  2140  cesaro  2146  camestros  2147  calemos  2157  swopo  4331  elrnrexdm  5685  tfrcl  6404  ixpsnf1o  6777  fidcenumlemrk  6999  subhalfnqq  7460  enq0ref  7479  prarloc  7549  letrp1  8853  p1le  8854  peano2uz2  9410  uzind  9414  uzid  9592  qreccl  9693  fprodsplit1f  11751  lmodfopne  13786
  Copyright terms: Public domain W3C validator