ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancli GIF version

Theorem ancli 323
Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.)
Hypothesis
Ref Expression
ancli.1 (𝜑𝜓)
Assertion
Ref Expression
ancli (𝜑 → (𝜑𝜓))

Proof of Theorem ancli
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 ancli.1 . 2 (𝜑𝜓)
31, 2jca 306 1 (𝜑 → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  pm4.45im  334  mo23  2079  barbari  2140  cesaro  2146  camestros  2147  calemos  2157  swopo  4324  elrnrexdm  5676  tfrcl  6389  ixpsnf1o  6762  fidcenumlemrk  6983  subhalfnqq  7443  enq0ref  7462  prarloc  7532  letrp1  8835  p1le  8836  peano2uz2  9390  uzind  9394  uzid  9572  qreccl  9672  fprodsplit1f  11674  lmodfopne  13642
  Copyright terms: Public domain W3C validator