![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ancli | GIF version |
Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.) |
Ref | Expression |
---|---|
ancli.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ancli | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | ancli.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | jca 306 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: pm4.45im 334 mo23 2077 barbari 2138 cesaro 2144 camestros 2145 calemos 2155 swopo 4318 elrnrexdm 5668 tfrcl 6378 ixpsnf1o 6749 fidcenumlemrk 6966 subhalfnqq 7426 enq0ref 7445 prarloc 7515 letrp1 8818 p1le 8819 peano2uz2 9373 uzind 9377 uzid 9555 qreccl 9655 fprodsplit1f 11655 lmodfopne 13510 |
Copyright terms: Public domain | W3C validator |