![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ancli | GIF version |
Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.) |
Ref | Expression |
---|---|
ancli.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ancli | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | ancli.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | jca 306 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: pm4.45im 334 mo23 2067 barbari 2128 cesaro 2134 camestros 2135 calemos 2145 swopo 4307 elrnrexdm 5656 tfrcl 6365 ixpsnf1o 6736 fidcenumlemrk 6953 subhalfnqq 7413 enq0ref 7432 prarloc 7502 letrp1 8805 p1le 8806 peano2uz2 9360 uzind 9364 uzid 9542 qreccl 9642 fprodsplit1f 11642 lmodfopne 13416 |
Copyright terms: Public domain | W3C validator |