| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancli | GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.) |
| Ref | Expression |
|---|---|
| ancli.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ancli | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | ancli.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | jca 306 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: pm4.45im 334 mo23 2095 barbari 2156 cesaro 2162 camestros 2163 calemos 2173 swopo 4353 elrnrexdm 5719 uchoice 6223 tfrcl 6450 ixpsnf1o 6823 fidcenumlemrk 7056 subhalfnqq 7527 enq0ref 7546 prarloc 7616 letrp1 8921 p1le 8922 peano2uz2 9480 uzind 9484 uzid 9662 qreccl 9763 fprodsplit1f 11945 lmodfopne 14088 |
| Copyright terms: Public domain | W3C validator |