![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ancli | GIF version |
Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.) |
Ref | Expression |
---|---|
ancli.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ancli | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | ancli.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | jca 306 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: pm4.45im 334 mo23 2079 barbari 2140 cesaro 2146 camestros 2147 calemos 2157 swopo 4321 elrnrexdm 5672 tfrcl 6384 ixpsnf1o 6755 fidcenumlemrk 6973 subhalfnqq 7433 enq0ref 7452 prarloc 7522 letrp1 8825 p1le 8826 peano2uz2 9380 uzind 9384 uzid 9562 qreccl 9662 fprodsplit1f 11662 lmodfopne 13610 |
Copyright terms: Public domain | W3C validator |