ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancli GIF version

Theorem ancli 323
Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.)
Hypothesis
Ref Expression
ancli.1 (𝜑𝜓)
Assertion
Ref Expression
ancli (𝜑 → (𝜑𝜓))

Proof of Theorem ancli
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 ancli.1 . 2 (𝜑𝜓)
31, 2jca 306 1 (𝜑 → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  pm4.45im  334  mo23  2079  barbari  2140  cesaro  2146  camestros  2147  calemos  2157  swopo  4321  elrnrexdm  5672  tfrcl  6384  ixpsnf1o  6755  fidcenumlemrk  6973  subhalfnqq  7433  enq0ref  7452  prarloc  7522  letrp1  8825  p1le  8826  peano2uz2  9380  uzind  9384  uzid  9562  qreccl  9662  fprodsplit1f  11662  lmodfopne  13610
  Copyright terms: Public domain W3C validator