| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancli | GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.) |
| Ref | Expression |
|---|---|
| ancli.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ancli | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | ancli.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | jca 306 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: pm4.45im 334 mo23 2086 barbari 2147 cesaro 2153 camestros 2154 calemos 2164 swopo 4342 elrnrexdm 5702 uchoice 6197 tfrcl 6424 ixpsnf1o 6797 fidcenumlemrk 7022 subhalfnqq 7484 enq0ref 7503 prarloc 7573 letrp1 8878 p1le 8879 peano2uz2 9436 uzind 9440 uzid 9618 qreccl 9719 fprodsplit1f 11802 lmodfopne 13908 |
| Copyright terms: Public domain | W3C validator |