![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ancli | GIF version |
Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.) |
Ref | Expression |
---|---|
ancli.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ancli | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | ancli.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | jca 306 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: pm4.45im 334 mo23 2079 barbari 2140 cesaro 2146 camestros 2147 calemos 2157 swopo 4324 elrnrexdm 5676 tfrcl 6389 ixpsnf1o 6762 fidcenumlemrk 6983 subhalfnqq 7443 enq0ref 7462 prarloc 7532 letrp1 8835 p1le 8836 peano2uz2 9390 uzind 9394 uzid 9572 qreccl 9672 fprodsplit1f 11674 lmodfopne 13642 |
Copyright terms: Public domain | W3C validator |