ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancli GIF version

Theorem ancli 323
Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.)
Hypothesis
Ref Expression
ancli.1 (𝜑𝜓)
Assertion
Ref Expression
ancli (𝜑 → (𝜑𝜓))

Proof of Theorem ancli
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 ancli.1 . 2 (𝜑𝜓)
31, 2jca 306 1 (𝜑 → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  pm4.45im  334  mo23  2119  barbari  2180  cesaro  2186  camestros  2187  calemos  2197  swopo  4397  elrnrexdm  5774  uchoice  6283  tfrcl  6510  ixpsnf1o  6883  fidcenumlemrk  7121  subhalfnqq  7601  enq0ref  7620  prarloc  7690  letrp1  8995  p1le  8996  peano2uz2  9554  uzind  9558  uzid  9736  qreccl  9837  fprodsplit1f  12145  lmodfopne  14290
  Copyright terms: Public domain W3C validator