![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ancli | GIF version |
Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.) |
Ref | Expression |
---|---|
ancli.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ancli | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | ancli.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | jca 306 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: pm4.45im 334 mo23 2079 barbari 2140 cesaro 2146 camestros 2147 calemos 2157 swopo 4331 elrnrexdm 5685 tfrcl 6404 ixpsnf1o 6777 fidcenumlemrk 6999 subhalfnqq 7460 enq0ref 7479 prarloc 7549 letrp1 8853 p1le 8854 peano2uz2 9410 uzind 9414 uzid 9592 qreccl 9693 fprodsplit1f 11751 lmodfopne 13786 |
Copyright terms: Public domain | W3C validator |