| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancli | GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.) |
| Ref | Expression |
|---|---|
| ancli.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ancli | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | ancli.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | jca 306 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: pm4.45im 334 mo23 2119 barbari 2180 cesaro 2186 camestros 2187 calemos 2197 swopo 4397 elrnrexdm 5774 uchoice 6283 tfrcl 6510 ixpsnf1o 6883 fidcenumlemrk 7121 subhalfnqq 7601 enq0ref 7620 prarloc 7690 letrp1 8995 p1le 8996 peano2uz2 9554 uzind 9558 uzid 9736 qreccl 9837 fprodsplit1f 12145 lmodfopne 14290 |
| Copyright terms: Public domain | W3C validator |