Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > baroco | GIF version |
Description: "Baroco", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and some 𝜒 is not 𝜓, therefore some 𝜒 is not 𝜑. (In Aristotelian notation, AOO-2: PaM and SoM therefore SoP.) For example, "All informative things are useful", "Some websites are not useful", therefore "Some websites are not informative." (Contributed by David A. Wheeler, 28-Aug-2016.) |
Ref | Expression |
---|---|
baroco.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
baroco.min | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
Ref | Expression |
---|---|
baroco | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baroco.min | . 2 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) | |
2 | baroco.maj | . . . . 5 ⊢ ∀𝑥(𝜑 → 𝜓) | |
3 | 2 | spi 1516 | . . . 4 ⊢ (𝜑 → 𝜓) |
4 | 3 | con3i 622 | . . 3 ⊢ (¬ 𝜓 → ¬ 𝜑) |
5 | 4 | anim2i 340 | . 2 ⊢ ((𝜒 ∧ ¬ 𝜓) → (𝜒 ∧ ¬ 𝜑)) |
6 | 1, 5 | eximii 1582 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∀wal 1333 ∃wex 1472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |