ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baroco GIF version

Theorem baroco 2113
Description: "Baroco", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and some 𝜒 is not 𝜓, therefore some 𝜒 is not 𝜑. (In Aristotelian notation, AOO-2: PaM and SoM therefore SoP.) For example, "All informative things are useful", "Some websites are not useful", therefore "Some websites are not informative." (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
baroco.maj 𝑥(𝜑𝜓)
baroco.min 𝑥(𝜒 ∧ ¬ 𝜓)
Assertion
Ref Expression
baroco 𝑥(𝜒 ∧ ¬ 𝜑)

Proof of Theorem baroco
StepHypRef Expression
1 baroco.min . 2 𝑥(𝜒 ∧ ¬ 𝜓)
2 baroco.maj . . . . 5 𝑥(𝜑𝜓)
32spi 1516 . . . 4 (𝜑𝜓)
43con3i 622 . . 3 𝜓 → ¬ 𝜑)
54anim2i 340 . 2 ((𝜒 ∧ ¬ 𝜓) → (𝜒 ∧ ¬ 𝜑))
61, 5eximii 1582 1 𝑥(𝜒 ∧ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wal 1333  wex 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-ial 1514
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator