Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcnul | GIF version |
Description: The empty class is bounded. See also bdcnulALT 13748. (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bdcnul | ⊢ BOUNDED ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3413 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | bdnth 13716 | . 2 ⊢ BOUNDED 𝑥 ∈ ∅ |
3 | 2 | bdelir 13729 | 1 ⊢ BOUNDED ∅ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ∅c0 3409 BOUNDED wbdc 13722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-bd0 13695 ax-bdim 13696 ax-bdn 13699 ax-bdeq 13702 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-nul 3410 df-bdc 13723 |
This theorem is referenced by: bdeq0 13749 |
Copyright terms: Public domain | W3C validator |