| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcnul | GIF version | ||
| Description: The empty class is bounded. See also bdcnulALT 15936. (Contributed by BJ, 3-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdcnul | ⊢ BOUNDED ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3468 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | bdnth 15904 | . 2 ⊢ BOUNDED 𝑥 ∈ ∅ |
| 3 | 2 | bdelir 15917 | 1 ⊢ BOUNDED ∅ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ∅c0 3464 BOUNDED wbdc 15910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-bd0 15883 ax-bdim 15884 ax-bdn 15887 ax-bdeq 15890 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-nul 3465 df-bdc 15911 |
| This theorem is referenced by: bdeq0 15937 |
| Copyright terms: Public domain | W3C validator |