| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcnul | GIF version | ||
| Description: The empty class is bounded. See also bdcnulALT 15522. (Contributed by BJ, 3-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdcnul | ⊢ BOUNDED ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3455 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | bdnth 15490 | . 2 ⊢ BOUNDED 𝑥 ∈ ∅ |
| 3 | 2 | bdelir 15503 | 1 ⊢ BOUNDED ∅ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ∅c0 3451 BOUNDED wbdc 15496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-bd0 15469 ax-bdim 15470 ax-bdn 15473 ax-bdeq 15476 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-nul 3452 df-bdc 15497 |
| This theorem is referenced by: bdeq0 15523 |
| Copyright terms: Public domain | W3C validator |