![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcnul | GIF version |
Description: The empty class is bounded. See also bdcnulALT 15479. (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bdcnul | ⊢ BOUNDED ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3454 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | bdnth 15447 | . 2 ⊢ BOUNDED 𝑥 ∈ ∅ |
3 | 2 | bdelir 15460 | 1 ⊢ BOUNDED ∅ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2167 ∅c0 3450 BOUNDED wbdc 15453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-bd0 15426 ax-bdim 15427 ax-bdn 15430 ax-bdeq 15433 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-nul 3451 df-bdc 15454 |
This theorem is referenced by: bdeq0 15480 |
Copyright terms: Public domain | W3C validator |