Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcnul GIF version

Theorem bdcnul 16186
Description: The empty class is bounded. See also bdcnulALT 16187. (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcnul BOUNDED

Proof of Theorem bdcnul
StepHypRef Expression
1 noel 3495 . . 3 ¬ 𝑥 ∈ ∅
21bdnth 16155 . 2 BOUNDED 𝑥 ∈ ∅
32bdelir 16168 1 BOUNDED
Colors of variables: wff set class
Syntax hints:  wcel 2200  c0 3491  BOUNDED wbdc 16161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bd0 16134  ax-bdim 16135  ax-bdn 16138  ax-bdeq 16141
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-nul 3492  df-bdc 16162
This theorem is referenced by:  bdeq0  16188
  Copyright terms: Public domain W3C validator