Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdnthALT GIF version

Theorem bdnthALT 15491
Description: Alternate proof of bdnth 15490 not using bdfal 15489. Then, bdfal 15489 can be proved from this theorem, using fal 1371. The total number of proof steps would be 17 (for bdnthALT 15491) + 3 = 20, which is more than 8 (for bdfal 15489) + 9 (for bdnth 15490) = 17. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bdnth.1 ¬ 𝜑
Assertion
Ref Expression
bdnthALT BOUNDED 𝜑

Proof of Theorem bdnthALT
StepHypRef Expression
1 bdtru 15488 . . 3 BOUNDED
21ax-bdn 15473 . 2 BOUNDED ¬ ⊤
3 notnot 630 . . . 4 (⊤ → ¬ ¬ ⊤)
43mptru 1373 . . 3 ¬ ¬ ⊤
5 bdnth.1 . . 3 ¬ 𝜑
64, 52false 702 . 2 (¬ ⊤ ↔ 𝜑)
72, 6bd0 15480 1 BOUNDED 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wtru 1365  BOUNDED wbd 15468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-bd0 15469  ax-bdim 15470  ax-bdn 15473  ax-bdeq 15476
This theorem depends on definitions:  df-bi 117  df-tru 1367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator