Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdnthALT GIF version

Theorem bdnthALT 15327
Description: Alternate proof of bdnth 15326 not using bdfal 15325. Then, bdfal 15325 can be proved from this theorem, using fal 1371. The total number of proof steps would be 17 (for bdnthALT 15327) + 3 = 20, which is more than 8 (for bdfal 15325) + 9 (for bdnth 15326) = 17. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bdnth.1 ¬ 𝜑
Assertion
Ref Expression
bdnthALT BOUNDED 𝜑

Proof of Theorem bdnthALT
StepHypRef Expression
1 bdtru 15324 . . 3 BOUNDED
21ax-bdn 15309 . 2 BOUNDED ¬ ⊤
3 notnot 630 . . . 4 (⊤ → ¬ ¬ ⊤)
43mptru 1373 . . 3 ¬ ¬ ⊤
5 bdnth.1 . . 3 ¬ 𝜑
64, 52false 702 . 2 (¬ ⊤ ↔ 𝜑)
72, 6bd0 15316 1 BOUNDED 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wtru 1365  BOUNDED wbd 15304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-bd0 15305  ax-bdim 15306  ax-bdn 15309  ax-bdeq 15312
This theorem depends on definitions:  df-bi 117  df-tru 1367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator