Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdnthALT GIF version

Theorem bdnthALT 13870
Description: Alternate proof of bdnth 13869 not using bdfal 13868. Then, bdfal 13868 can be proved from this theorem, using fal 1355. The total number of proof steps would be 17 (for bdnthALT 13870) + 3 = 20, which is more than 8 (for bdfal 13868) + 9 (for bdnth 13869) = 17. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bdnth.1 ¬ 𝜑
Assertion
Ref Expression
bdnthALT BOUNDED 𝜑

Proof of Theorem bdnthALT
StepHypRef Expression
1 bdtru 13867 . . 3 BOUNDED
21ax-bdn 13852 . 2 BOUNDED ¬ ⊤
3 notnot 624 . . . 4 (⊤ → ¬ ¬ ⊤)
43mptru 1357 . . 3 ¬ ¬ ⊤
5 bdnth.1 . . 3 ¬ 𝜑
64, 52false 696 . 2 (¬ ⊤ ↔ 𝜑)
72, 6bd0 13859 1 BOUNDED 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wtru 1349  BOUNDED wbd 13847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-bd0 13848  ax-bdim 13849  ax-bdn 13852  ax-bdeq 13855
This theorem depends on definitions:  df-bi 116  df-tru 1351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator