Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdnthALT GIF version

Theorem bdnthALT 15885
Description: Alternate proof of bdnth 15884 not using bdfal 15883. Then, bdfal 15883 can be proved from this theorem, using fal 1380. The total number of proof steps would be 17 (for bdnthALT 15885) + 3 = 20, which is more than 8 (for bdfal 15883) + 9 (for bdnth 15884) = 17. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bdnth.1 ¬ 𝜑
Assertion
Ref Expression
bdnthALT BOUNDED 𝜑

Proof of Theorem bdnthALT
StepHypRef Expression
1 bdtru 15882 . . 3 BOUNDED
21ax-bdn 15867 . 2 BOUNDED ¬ ⊤
3 notnot 630 . . . 4 (⊤ → ¬ ¬ ⊤)
43mptru 1382 . . 3 ¬ ¬ ⊤
5 bdnth.1 . . 3 ¬ 𝜑
64, 52false 703 . 2 (¬ ⊤ ↔ 𝜑)
72, 6bd0 15874 1 BOUNDED 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wtru 1374  BOUNDED wbd 15862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-bd0 15863  ax-bdim 15864  ax-bdn 15867  ax-bdeq 15870
This theorem depends on definitions:  df-bi 117  df-tru 1376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator