Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdnthALT GIF version

Theorem bdnthALT 16128
Description: Alternate proof of bdnth 16127 not using bdfal 16126. Then, bdfal 16126 can be proved from this theorem, using fal 1402. The total number of proof steps would be 17 (for bdnthALT 16128) + 3 = 20, which is more than 8 (for bdfal 16126) + 9 (for bdnth 16127) = 17. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bdnth.1 ¬ 𝜑
Assertion
Ref Expression
bdnthALT BOUNDED 𝜑

Proof of Theorem bdnthALT
StepHypRef Expression
1 bdtru 16125 . . 3 BOUNDED
21ax-bdn 16110 . 2 BOUNDED ¬ ⊤
3 notnot 632 . . . 4 (⊤ → ¬ ¬ ⊤)
43mptru 1404 . . 3 ¬ ¬ ⊤
5 bdnth.1 . . 3 ¬ 𝜑
64, 52false 706 . 2 (¬ ⊤ ↔ 𝜑)
72, 6bd0 16117 1 BOUNDED 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wtru 1396  BOUNDED wbd 16105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-bd0 16106  ax-bdim 16107  ax-bdn 16110  ax-bdeq 16113
This theorem depends on definitions:  df-bi 117  df-tru 1398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator