ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bicom1 GIF version

Theorem bicom1 130
Description: Commutative law for equivalence. (Contributed by Wolf Lammen, 10-Nov-2012.)
Assertion
Ref Expression
bicom1 ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem bicom1
StepHypRef Expression
1 biimpr 129 . 2 ((𝜑𝜓) → (𝜓𝜑))
2 biimp 117 . 2 ((𝜑𝜓) → (𝜑𝜓))
31, 2impbid 128 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bicomi  131  bicom  139  pm5.21ndd  695  cbvexdh  1906  elabgf2  13325
  Copyright terms: Public domain W3C validator