Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.21ndd | GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
2 | pm5.21ndd.3 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
3 | 1, 2 | syld 45 | . . 3 ⊢ (𝜑 → (𝜒 → (𝜒 ↔ 𝜃))) |
4 | 3 | ibd 177 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
5 | pm5.21ndd.2 | . . . . 5 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
6 | 5, 2 | syld 45 | . . . 4 ⊢ (𝜑 → (𝜃 → (𝜒 ↔ 𝜃))) |
7 | bicom1 130 | . . . 4 ⊢ ((𝜒 ↔ 𝜃) → (𝜃 ↔ 𝜒)) | |
8 | 6, 7 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜃 ↔ 𝜒))) |
9 | 8 | ibd 177 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
10 | 4, 9 | impbid 128 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.21nd 902 sbcrext 3014 rmob 3029 epelg 4249 eqbrrdva 4753 relbrcnvg 4962 fmptco 5630 ovelrn 5963 brtpos2 6192 elpmg 6602 brdomg 6686 elfi2 6909 genpelvl 7415 genpelvu 7416 fzoval 10029 clim 11160 cnrest2 12596 cnptoprest2 12600 lmss 12606 reopnap 12898 limcdifap 12991 |
Copyright terms: Public domain | W3C validator |