ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.21ndd GIF version

Theorem pm5.21ndd 706
Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypotheses
Ref Expression
pm5.21ndd.1 (𝜑 → (𝜒𝜓))
pm5.21ndd.2 (𝜑 → (𝜃𝜓))
pm5.21ndd.3 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
pm5.21ndd (𝜑 → (𝜒𝜃))

Proof of Theorem pm5.21ndd
StepHypRef Expression
1 pm5.21ndd.1 . . . 4 (𝜑 → (𝜒𝜓))
2 pm5.21ndd.3 . . . 4 (𝜑 → (𝜓 → (𝜒𝜃)))
31, 2syld 45 . . 3 (𝜑 → (𝜒 → (𝜒𝜃)))
43ibd 178 . 2 (𝜑 → (𝜒𝜃))
5 pm5.21ndd.2 . . . . 5 (𝜑 → (𝜃𝜓))
65, 2syld 45 . . . 4 (𝜑 → (𝜃 → (𝜒𝜃)))
7 bicom1 131 . . . 4 ((𝜒𝜃) → (𝜃𝜒))
86, 7syl6 33 . . 3 (𝜑 → (𝜃 → (𝜃𝜒)))
98ibd 178 . 2 (𝜑 → (𝜃𝜒))
104, 9impbid 129 1 (𝜑 → (𝜒𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.21nd  917  sbcrext  3067  rmob  3082  epelg  4326  eqbrrdva  4837  elrelimasn  5036  relbrcnvg  5049  fmptco  5731  ovelrn  6076  brtpos2  6318  elpmg  6732  brdomg  6816  elfi2  7047  genpelvl  7598  genpelvu  7599  fzoval  10242  nninfinf  10554  clim  11465  dvdsaddre2b  12025  pceu  12491  divsfval  13032  sgrppropd  13117  mndpropd  13144  issubg3  13400  resghm2b  13470  rngpropd  13589  dvdsrd  13728  opprsubrngg  13845  subrngpropd  13850  subrgpropd  13887  rhmpropd  13888  lmodprop2d  13982  cnrest2  14558  cnptoprest2  14562  lmss  14568  reopnap  14868  limcdifap  14984
  Copyright terms: Public domain W3C validator