| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21ndd | GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
| pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
| 2 | pm5.21ndd.3 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 3 | 1, 2 | syld 45 | . . 3 ⊢ (𝜑 → (𝜒 → (𝜒 ↔ 𝜃))) |
| 4 | 3 | ibd 178 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 5 | pm5.21ndd.2 | . . . . 5 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
| 6 | 5, 2 | syld 45 | . . . 4 ⊢ (𝜑 → (𝜃 → (𝜒 ↔ 𝜃))) |
| 7 | bicom1 131 | . . . 4 ⊢ ((𝜒 ↔ 𝜃) → (𝜃 ↔ 𝜒)) | |
| 8 | 6, 7 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜃 ↔ 𝜒))) |
| 9 | 8 | ibd 178 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 10 | 4, 9 | impbid 129 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21nd 920 sbcrext 3086 rmob 3102 epelg 4358 eqbrrdva 4869 elrelimasn 5070 relbrcnvg 5083 fmptco 5774 ovelrn 6125 brtpos2 6367 elpmg 6781 brdomg 6867 elfi2 7107 genpelvl 7667 genpelvu 7668 fzoval 10312 nninfinf 10632 clim 11758 dvdsaddre2b 12318 pceu 12784 divsfval 13327 sgrppropd 13412 mndpropd 13439 issubg3 13695 resghm2b 13765 rngpropd 13884 dvdsrd 14023 opprsubrngg 14140 subrngpropd 14145 subrgpropd 14182 rhmpropd 14183 lmodprop2d 14277 cnrest2 14875 cnptoprest2 14879 lmss 14885 reopnap 15185 limcdifap 15301 |
| Copyright terms: Public domain | W3C validator |