ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.21ndd GIF version

Theorem pm5.21ndd 707
Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypotheses
Ref Expression
pm5.21ndd.1 (𝜑 → (𝜒𝜓))
pm5.21ndd.2 (𝜑 → (𝜃𝜓))
pm5.21ndd.3 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
pm5.21ndd (𝜑 → (𝜒𝜃))

Proof of Theorem pm5.21ndd
StepHypRef Expression
1 pm5.21ndd.1 . . . 4 (𝜑 → (𝜒𝜓))
2 pm5.21ndd.3 . . . 4 (𝜑 → (𝜓 → (𝜒𝜃)))
31, 2syld 45 . . 3 (𝜑 → (𝜒 → (𝜒𝜃)))
43ibd 178 . 2 (𝜑 → (𝜒𝜃))
5 pm5.21ndd.2 . . . . 5 (𝜑 → (𝜃𝜓))
65, 2syld 45 . . . 4 (𝜑 → (𝜃 → (𝜒𝜃)))
7 bicom1 131 . . . 4 ((𝜒𝜃) → (𝜃𝜒))
86, 7syl6 33 . . 3 (𝜑 → (𝜃 → (𝜃𝜒)))
98ibd 178 . 2 (𝜑 → (𝜃𝜒))
104, 9impbid 129 1 (𝜑 → (𝜒𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.21nd  918  sbcrext  3077  rmob  3092  epelg  4341  eqbrrdva  4852  elrelimasn  5053  relbrcnvg  5066  fmptco  5753  ovelrn  6102  brtpos2  6344  elpmg  6758  brdomg  6844  elfi2  7081  genpelvl  7632  genpelvu  7633  fzoval  10277  nninfinf  10595  clim  11636  dvdsaddre2b  12196  pceu  12662  divsfval  13204  sgrppropd  13289  mndpropd  13316  issubg3  13572  resghm2b  13642  rngpropd  13761  dvdsrd  13900  opprsubrngg  14017  subrngpropd  14022  subrgpropd  14059  rhmpropd  14060  lmodprop2d  14154  cnrest2  14752  cnptoprest2  14756  lmss  14762  reopnap  15062  limcdifap  15178
  Copyright terms: Public domain W3C validator