![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.21ndd | GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
2 | pm5.21ndd.3 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
3 | 1, 2 | syld 45 | . . 3 ⊢ (𝜑 → (𝜒 → (𝜒 ↔ 𝜃))) |
4 | 3 | ibd 178 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
5 | pm5.21ndd.2 | . . . . 5 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
6 | 5, 2 | syld 45 | . . . 4 ⊢ (𝜑 → (𝜃 → (𝜒 ↔ 𝜃))) |
7 | bicom1 131 | . . . 4 ⊢ ((𝜒 ↔ 𝜃) → (𝜃 ↔ 𝜒)) | |
8 | 6, 7 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜃 ↔ 𝜒))) |
9 | 8 | ibd 178 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
10 | 4, 9 | impbid 129 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm5.21nd 917 sbcrext 3063 rmob 3078 epelg 4321 eqbrrdva 4832 elrelimasn 5031 relbrcnvg 5044 fmptco 5724 ovelrn 6067 brtpos2 6304 elpmg 6718 brdomg 6802 elfi2 7031 genpelvl 7572 genpelvu 7573 fzoval 10214 nninfinf 10514 clim 11424 dvdsaddre2b 11984 pceu 12433 divsfval 12911 sgrppropd 12996 mndpropd 13021 issubg3 13262 resghm2b 13332 rngpropd 13451 dvdsrd 13590 opprsubrngg 13707 subrngpropd 13712 subrgpropd 13749 rhmpropd 13750 lmodprop2d 13844 cnrest2 14404 cnptoprest2 14408 lmss 14414 reopnap 14706 limcdifap 14816 |
Copyright terms: Public domain | W3C validator |