ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.21ndd GIF version

Theorem pm5.21ndd 710
Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypotheses
Ref Expression
pm5.21ndd.1 (𝜑 → (𝜒𝜓))
pm5.21ndd.2 (𝜑 → (𝜃𝜓))
pm5.21ndd.3 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
pm5.21ndd (𝜑 → (𝜒𝜃))

Proof of Theorem pm5.21ndd
StepHypRef Expression
1 pm5.21ndd.1 . . . 4 (𝜑 → (𝜒𝜓))
2 pm5.21ndd.3 . . . 4 (𝜑 → (𝜓 → (𝜒𝜃)))
31, 2syld 45 . . 3 (𝜑 → (𝜒 → (𝜒𝜃)))
43ibd 178 . 2 (𝜑 → (𝜒𝜃))
5 pm5.21ndd.2 . . . . 5 (𝜑 → (𝜃𝜓))
65, 2syld 45 . . . 4 (𝜑 → (𝜃 → (𝜒𝜃)))
7 bicom1 131 . . . 4 ((𝜒𝜃) → (𝜃𝜒))
86, 7syl6 33 . . 3 (𝜑 → (𝜃 → (𝜃𝜒)))
98ibd 178 . 2 (𝜑 → (𝜃𝜒))
104, 9impbid 129 1 (𝜑 → (𝜒𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.21nd  921  sbcrext  3106  rmob  3122  epelg  4381  eqbrrdva  4892  elrelimasn  5094  relbrcnvg  5107  fmptco  5803  ovelrn  6160  brtpos2  6403  elpmg  6819  brdomg  6905  elfi2  7147  genpelvl  7707  genpelvu  7708  fzoval  10352  nninfinf  10673  clim  11800  dvdsaddre2b  12360  pceu  12826  divsfval  13369  sgrppropd  13454  mndpropd  13481  issubg3  13737  resghm2b  13807  rngpropd  13926  dvdsrd  14066  opprsubrngg  14183  subrngpropd  14188  subrgpropd  14225  rhmpropd  14226  lmodprop2d  14320  cnrest2  14918  cnptoprest2  14922  lmss  14928  reopnap  15228  limcdifap  15344  iswlkg  16050
  Copyright terms: Public domain W3C validator