| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21ndd | GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
| pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
| 2 | pm5.21ndd.3 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 3 | 1, 2 | syld 45 | . . 3 ⊢ (𝜑 → (𝜒 → (𝜒 ↔ 𝜃))) |
| 4 | 3 | ibd 178 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 5 | pm5.21ndd.2 | . . . . 5 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
| 6 | 5, 2 | syld 45 | . . . 4 ⊢ (𝜑 → (𝜃 → (𝜒 ↔ 𝜃))) |
| 7 | bicom1 131 | . . . 4 ⊢ ((𝜒 ↔ 𝜃) → (𝜃 ↔ 𝜒)) | |
| 8 | 6, 7 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜃 ↔ 𝜒))) |
| 9 | 8 | ibd 178 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 10 | 4, 9 | impbid 129 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21nd 918 sbcrext 3077 rmob 3092 epelg 4341 eqbrrdva 4852 elrelimasn 5053 relbrcnvg 5066 fmptco 5753 ovelrn 6102 brtpos2 6344 elpmg 6758 brdomg 6844 elfi2 7081 genpelvl 7632 genpelvu 7633 fzoval 10277 nninfinf 10595 clim 11636 dvdsaddre2b 12196 pceu 12662 divsfval 13204 sgrppropd 13289 mndpropd 13316 issubg3 13572 resghm2b 13642 rngpropd 13761 dvdsrd 13900 opprsubrngg 14017 subrngpropd 14022 subrgpropd 14059 rhmpropd 14060 lmodprop2d 14154 cnrest2 14752 cnptoprest2 14756 lmss 14762 reopnap 15062 limcdifap 15178 |
| Copyright terms: Public domain | W3C validator |