ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.21ndd GIF version

Theorem pm5.21ndd 706
Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypotheses
Ref Expression
pm5.21ndd.1 (𝜑 → (𝜒𝜓))
pm5.21ndd.2 (𝜑 → (𝜃𝜓))
pm5.21ndd.3 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
pm5.21ndd (𝜑 → (𝜒𝜃))

Proof of Theorem pm5.21ndd
StepHypRef Expression
1 pm5.21ndd.1 . . . 4 (𝜑 → (𝜒𝜓))
2 pm5.21ndd.3 . . . 4 (𝜑 → (𝜓 → (𝜒𝜃)))
31, 2syld 45 . . 3 (𝜑 → (𝜒 → (𝜒𝜃)))
43ibd 178 . 2 (𝜑 → (𝜒𝜃))
5 pm5.21ndd.2 . . . . 5 (𝜑 → (𝜃𝜓))
65, 2syld 45 . . . 4 (𝜑 → (𝜃 → (𝜒𝜃)))
7 bicom1 131 . . . 4 ((𝜒𝜃) → (𝜃𝜒))
86, 7syl6 33 . . 3 (𝜑 → (𝜃 → (𝜃𝜒)))
98ibd 178 . 2 (𝜑 → (𝜃𝜒))
104, 9impbid 129 1 (𝜑 → (𝜒𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.21nd  917  sbcrext  3064  rmob  3079  epelg  4322  eqbrrdva  4833  elrelimasn  5032  relbrcnvg  5045  fmptco  5725  ovelrn  6069  brtpos2  6306  elpmg  6720  brdomg  6804  elfi2  7033  genpelvl  7574  genpelvu  7575  fzoval  10217  nninfinf  10517  clim  11427  dvdsaddre2b  11987  pceu  12436  divsfval  12914  sgrppropd  12999  mndpropd  13024  issubg3  13265  resghm2b  13335  rngpropd  13454  dvdsrd  13593  opprsubrngg  13710  subrngpropd  13715  subrgpropd  13752  rhmpropd  13753  lmodprop2d  13847  cnrest2  14415  cnptoprest2  14419  lmss  14425  reopnap  14725  limcdifap  14841
  Copyright terms: Public domain W3C validator