| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21ndd | GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
| pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
| 2 | pm5.21ndd.3 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 3 | 1, 2 | syld 45 | . . 3 ⊢ (𝜑 → (𝜒 → (𝜒 ↔ 𝜃))) |
| 4 | 3 | ibd 178 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 5 | pm5.21ndd.2 | . . . . 5 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
| 6 | 5, 2 | syld 45 | . . . 4 ⊢ (𝜑 → (𝜃 → (𝜒 ↔ 𝜃))) |
| 7 | bicom1 131 | . . . 4 ⊢ ((𝜒 ↔ 𝜃) → (𝜃 ↔ 𝜒)) | |
| 8 | 6, 7 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜃 ↔ 𝜒))) |
| 9 | 8 | ibd 178 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 10 | 4, 9 | impbid 129 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21nd 917 sbcrext 3067 rmob 3082 epelg 4326 eqbrrdva 4837 elrelimasn 5036 relbrcnvg 5049 fmptco 5731 ovelrn 6076 brtpos2 6318 elpmg 6732 brdomg 6816 elfi2 7047 genpelvl 7596 genpelvu 7597 fzoval 10240 nninfinf 10552 clim 11463 dvdsaddre2b 12023 pceu 12489 divsfval 13030 sgrppropd 13115 mndpropd 13142 issubg3 13398 resghm2b 13468 rngpropd 13587 dvdsrd 13726 opprsubrngg 13843 subrngpropd 13848 subrgpropd 13885 rhmpropd 13886 lmodprop2d 13980 cnrest2 14556 cnptoprest2 14560 lmss 14566 reopnap 14866 limcdifap 14982 |
| Copyright terms: Public domain | W3C validator |