| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21ndd | GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.21ndd.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| pm5.21ndd.2 | ⊢ (𝜑 → (𝜃 → 𝜓)) |
| pm5.21ndd.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.21ndd | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ndd.1 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
| 2 | pm5.21ndd.3 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 3 | 1, 2 | syld 45 | . . 3 ⊢ (𝜑 → (𝜒 → (𝜒 ↔ 𝜃))) |
| 4 | 3 | ibd 178 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 5 | pm5.21ndd.2 | . . . . 5 ⊢ (𝜑 → (𝜃 → 𝜓)) | |
| 6 | 5, 2 | syld 45 | . . . 4 ⊢ (𝜑 → (𝜃 → (𝜒 ↔ 𝜃))) |
| 7 | bicom1 131 | . . . 4 ⊢ ((𝜒 ↔ 𝜃) → (𝜃 ↔ 𝜒)) | |
| 8 | 6, 7 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜃 → (𝜃 ↔ 𝜒))) |
| 9 | 8 | ibd 178 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 10 | 4, 9 | impbid 129 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21nd 917 sbcrext 3067 rmob 3082 epelg 4326 eqbrrdva 4837 elrelimasn 5036 relbrcnvg 5049 fmptco 5731 ovelrn 6076 brtpos2 6318 elpmg 6732 brdomg 6816 elfi2 7047 genpelvl 7598 genpelvu 7599 fzoval 10242 nninfinf 10554 clim 11465 dvdsaddre2b 12025 pceu 12491 divsfval 13032 sgrppropd 13117 mndpropd 13144 issubg3 13400 resghm2b 13470 rngpropd 13589 dvdsrd 13728 opprsubrngg 13845 subrngpropd 13850 subrgpropd 13887 rhmpropd 13888 lmodprop2d 13982 cnrest2 14558 cnptoprest2 14562 lmss 14568 reopnap 14868 limcdifap 14984 |
| Copyright terms: Public domain | W3C validator |