Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabgf2 GIF version

Theorem elabgf2 15426
Description: One implication of elabgf 2906. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elabgf2.nf1 𝑥𝐴
elabgf2.nf2 𝑥𝜓
elabgf2.1 (𝑥 = 𝐴 → (𝜓𝜑))
Assertion
Ref Expression
elabgf2 (𝐴𝐵 → (𝜓𝐴 ∈ {𝑥𝜑}))

Proof of Theorem elabgf2
StepHypRef Expression
1 elabgf2.nf1 . 2 𝑥𝐴
2 elabgf2.nf2 . . 3 𝑥𝜓
3 nfab1 2341 . . . 4 𝑥{𝑥𝜑}
41, 3nfel 2348 . . 3 𝑥 𝐴 ∈ {𝑥𝜑}
52, 4nfim 1586 . 2 𝑥(𝜓𝐴 ∈ {𝑥𝜑})
6 elabgf0 15423 . 2 (𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜑))
7 bicom1 131 . . 3 ((𝐴 ∈ {𝑥𝜑} ↔ 𝜑) → (𝜑𝐴 ∈ {𝑥𝜑}))
8 elabgf2.1 . . . 4 (𝑥 = 𝐴 → (𝜓𝜑))
9 biimp 118 . . . 4 ((𝜑𝐴 ∈ {𝑥𝜑}) → (𝜑𝐴 ∈ {𝑥𝜑}))
108, 9syl9 72 . . 3 (𝑥 = 𝐴 → ((𝜑𝐴 ∈ {𝑥𝜑}) → (𝜓𝐴 ∈ {𝑥𝜑})))
117, 10syl5 32 . 2 (𝑥 = 𝐴 → ((𝐴 ∈ {𝑥𝜑} ↔ 𝜑) → (𝜓𝐴 ∈ {𝑥𝜑})))
121, 5, 6, 11bj-vtoclgf 15422 1 (𝐴𝐵 → (𝜓𝐴 ∈ {𝑥𝜑}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wnf 1474  wcel 2167  {cab 2182  wnfc 2326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by:  elabf2  15428  elabg2  15431  bj-intabssel1  15436
  Copyright terms: Public domain W3C validator