Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabgf2 GIF version

Theorem elabgf2 13396
Description: One implication of elabgf 2854. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elabgf2.nf1 𝑥𝐴
elabgf2.nf2 𝑥𝜓
elabgf2.1 (𝑥 = 𝐴 → (𝜓𝜑))
Assertion
Ref Expression
elabgf2 (𝐴𝐵 → (𝜓𝐴 ∈ {𝑥𝜑}))

Proof of Theorem elabgf2
StepHypRef Expression
1 elabgf2.nf1 . 2 𝑥𝐴
2 elabgf2.nf2 . . 3 𝑥𝜓
3 nfab1 2301 . . . 4 𝑥{𝑥𝜑}
41, 3nfel 2308 . . 3 𝑥 𝐴 ∈ {𝑥𝜑}
52, 4nfim 1552 . 2 𝑥(𝜓𝐴 ∈ {𝑥𝜑})
6 elabgf0 13393 . 2 (𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜑))
7 bicom1 130 . . 3 ((𝐴 ∈ {𝑥𝜑} ↔ 𝜑) → (𝜑𝐴 ∈ {𝑥𝜑}))
8 elabgf2.1 . . . 4 (𝑥 = 𝐴 → (𝜓𝜑))
9 biimp 117 . . . 4 ((𝜑𝐴 ∈ {𝑥𝜑}) → (𝜑𝐴 ∈ {𝑥𝜑}))
108, 9syl9 72 . . 3 (𝑥 = 𝐴 → ((𝜑𝐴 ∈ {𝑥𝜑}) → (𝜓𝐴 ∈ {𝑥𝜑})))
117, 10syl5 32 . 2 (𝑥 = 𝐴 → ((𝐴 ∈ {𝑥𝜑} ↔ 𝜑) → (𝜓𝐴 ∈ {𝑥𝜑})))
121, 5, 6, 11bj-vtoclgf 13392 1 (𝐴𝐵 → (𝜓𝐴 ∈ {𝑥𝜑}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1335  wnf 1440  wcel 2128  {cab 2143  wnfc 2286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714
This theorem is referenced by:  elabf2  13398  elabg2  13401  bj-intabssel1  13406
  Copyright terms: Public domain W3C validator