| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > elabgf2 | GIF version | ||
| Description: One implication of elabgf 2945. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| elabgf2.nf1 | ⊢ Ⅎ𝑥𝐴 |
| elabgf2.nf2 | ⊢ Ⅎ𝑥𝜓 |
| elabgf2.1 | ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| elabgf2 | ⊢ (𝐴 ∈ 𝐵 → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabgf2.nf1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | elabgf2.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | nfab1 2374 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 4 | 1, 3 | nfel 2381 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ {𝑥 ∣ 𝜑} |
| 5 | 2, 4 | nfim 1618 | . 2 ⊢ Ⅎ𝑥(𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 6 | elabgf0 16099 | . 2 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) | |
| 7 | bicom1 131 | . . 3 ⊢ ((𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) → (𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 8 | elabgf2.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) | |
| 9 | biimp 118 | . . . 4 ⊢ ((𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) → (𝜑 → 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 10 | 8, 9 | syl9 72 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑}))) |
| 11 | 7, 10 | syl5 32 | . 2 ⊢ (𝑥 = 𝐴 → ((𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑}))) |
| 12 | 1, 5, 6, 11 | bj-vtoclgf 16098 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 Ⅎwnf 1506 ∈ wcel 2200 {cab 2215 Ⅎwnfc 2359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: elabf2 16104 elabg2 16107 bj-intabssel1 16112 |
| Copyright terms: Public domain | W3C validator |