| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > elabgf2 | GIF version | ||
| Description: One implication of elabgf 2914. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| elabgf2.nf1 | ⊢ Ⅎ𝑥𝐴 |
| elabgf2.nf2 | ⊢ Ⅎ𝑥𝜓 |
| elabgf2.1 | ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| elabgf2 | ⊢ (𝐴 ∈ 𝐵 → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabgf2.nf1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | elabgf2.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | nfab1 2349 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 4 | 1, 3 | nfel 2356 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ {𝑥 ∣ 𝜑} |
| 5 | 2, 4 | nfim 1594 | . 2 ⊢ Ⅎ𝑥(𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 6 | elabgf0 15646 | . 2 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) | |
| 7 | bicom1 131 | . . 3 ⊢ ((𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) → (𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 8 | elabgf2.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) | |
| 9 | biimp 118 | . . . 4 ⊢ ((𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) → (𝜑 → 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 10 | 8, 9 | syl9 72 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑}))) |
| 11 | 7, 10 | syl5 32 | . 2 ⊢ (𝑥 = 𝐴 → ((𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑}))) |
| 12 | 1, 5, 6, 11 | bj-vtoclgf 15645 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 Ⅎwnf 1482 ∈ wcel 2175 {cab 2190 Ⅎwnfc 2334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 |
| This theorem is referenced by: elabf2 15651 elabg2 15654 bj-intabssel1 15659 |
| Copyright terms: Public domain | W3C validator |