Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnsn GIF version

Theorem bj-nnsn 13614
Description: As far as implying a negated formula is concerned, a formula is equivalent to its double negation. (Contributed by BJ, 24-Nov-2023.)
Assertion
Ref Expression
bj-nnsn ((𝜑 → ¬ 𝜓) ↔ (¬ ¬ 𝜑 → ¬ 𝜓))

Proof of Theorem bj-nnsn
StepHypRef Expression
1 con3 632 . . . 4 ((𝜑 → ¬ 𝜓) → (¬ ¬ 𝜓 → ¬ 𝜑))
21con3d 621 . . 3 ((𝜑 → ¬ 𝜓) → (¬ ¬ 𝜑 → ¬ ¬ ¬ 𝜓))
3 notnotnot 624 . . 3 (¬ ¬ ¬ 𝜓 ↔ ¬ 𝜓)
42, 3syl6ib 160 . 2 ((𝜑 → ¬ 𝜓) → (¬ ¬ 𝜑 → ¬ 𝜓))
5 notnot 619 . . 3 (𝜑 → ¬ ¬ 𝜑)
65imim1i 60 . 2 ((¬ ¬ 𝜑 → ¬ 𝜓) → (𝜑 → ¬ 𝜓))
74, 6impbii 125 1 ((𝜑 → ¬ 𝜓) ↔ (¬ ¬ 𝜑 → ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator