![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > notbii | GIF version |
Description: Equivalence property for negation. Inference form. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
notbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
notbii | ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | notbi 667 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: sylnbi 679 xchnxbi 681 xchbinx 683 nndc 852 xorcom 1399 xordidc 1410 sbn 1964 neirr 2369 dfrex2dc 2481 ddifstab 3282 dfss4st 3383 ssddif 3384 difin 3387 difundi 3402 difindiss 3404 indifdir 3406 rabeq0 3467 abeq0 3468 snprc 3672 difprsnss 3745 uni0b 3849 disjnim 4009 brdif 4071 unidif0 4182 dtruex 4573 dcextest 4595 difopab 4775 cnvdif 5050 imadiflem 5310 imadif 5311 brprcneu 5523 poxp 6251 finexdc 6920 snexxph 6967 infmoti 7045 ismkvnex 7171 pw1nel3 7248 onntri35 7254 netap 7271 prltlu 7504 recexprlemdisj 7647 axpre-apti 7902 dfinfre 8931 fzdifsuc 10099 fzp1nel 10122 ntreq0 14029 bj-nnor 14883 bj-nndcALT 14907 nnti 15142 |
Copyright terms: Public domain | W3C validator |