| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notbii | GIF version | ||
| Description: Equivalence property for negation. Inference form. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| notbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| notbii | ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | notbi 667 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnbi 679 xchnxbi 681 xchbinx 683 nndc 852 xorcom 1407 xordidc 1418 dcfromnotnotr 1466 dcfromcon 1467 sbn 1979 neirr 2384 dfrex2dc 2496 ddifstab 3304 dfss4st 3405 ssddif 3406 difin 3409 difundi 3424 difindiss 3426 indifdir 3428 rabeq0 3489 abeq0 3490 snprc 3697 difprsnss 3770 uni0b 3874 disjnim 4034 brdif 4096 unidif0 4210 dtruex 4606 dcextest 4628 difopab 4810 cnvdif 5088 imadiflem 5352 imadif 5353 brprcneu 5568 poxp 6317 finexdc 6998 snexxph 7051 infmoti 7129 ismkvnex 7256 pw1nel3 7342 onntri35 7348 netap 7365 prltlu 7599 recexprlemdisj 7742 axpre-apti 7997 dfinfre 9028 fzdifsuc 10202 fzp1nel 10225 ntreq0 14575 bj-nnor 15632 bj-nndcALT 15656 nnti 15891 |
| Copyright terms: Public domain | W3C validator |