| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notbii | GIF version | ||
| Description: Equivalence property for negation. Inference form. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| notbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| notbii | ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | notbi 668 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnbi 680 xchnxbi 682 xchbinx 684 nndc 853 xorcom 1408 xordidc 1419 dcfromnotnotr 1467 dcfromcon 1468 sbn 1980 neirr 2385 dfrex2dc 2497 ddifstab 3305 dfss4st 3406 ssddif 3407 difin 3410 difundi 3425 difindiss 3427 indifdir 3429 rabeq0 3490 abeq0 3491 snprc 3698 difprsnss 3771 uni0b 3875 disjnim 4035 brdif 4097 unidif0 4211 dtruex 4607 dcextest 4629 difopab 4811 cnvdif 5089 imadiflem 5353 imadif 5354 brprcneu 5569 poxp 6318 finexdc 6999 snexxph 7052 infmoti 7130 ismkvnex 7257 pw1nel3 7343 onntri35 7349 netap 7366 prltlu 7600 recexprlemdisj 7743 axpre-apti 7998 dfinfre 9029 fzdifsuc 10203 fzp1nel 10226 ntreq0 14604 bj-nnor 15670 bj-nndcALT 15694 nnti 15929 |
| Copyright terms: Public domain | W3C validator |