| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notbii | GIF version | ||
| Description: Equivalence property for negation. Inference form. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| notbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| notbii | ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | notbi 668 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnbi 680 xchnxbi 682 xchbinx 684 nndc 853 xorcom 1408 xordidc 1419 dcfromnotnotr 1468 dcfromcon 1469 sbn 1981 neirr 2387 dfrex2dc 2499 ddifstab 3313 dfss4st 3414 ssddif 3415 difin 3418 difundi 3433 difindiss 3435 indifdir 3437 rabeq0 3498 abeq0 3499 snprc 3708 difprsnss 3782 uni0b 3889 disjnim 4049 brdif 4113 unidif0 4227 dtruex 4625 dcextest 4647 difopab 4829 cnvdif 5108 imadiflem 5372 imadif 5373 brprcneu 5592 poxp 6341 finexdc 7025 snexxph 7078 infmoti 7156 ismkvnex 7283 pw1nel3 7377 onntri35 7383 netap 7401 prltlu 7635 recexprlemdisj 7778 axpre-apti 8033 dfinfre 9064 fzdifsuc 10238 fzp1nel 10261 swrdccatin2 11220 ntreq0 14719 bj-nnor 15870 bj-nndcALT 15894 nnti 16129 |
| Copyright terms: Public domain | W3C validator |