![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > notbii | GIF version |
Description: Equivalence property for negation. Inference form. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
notbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
notbii | ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | notbi 667 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: sylnbi 679 xchnxbi 681 xchbinx 683 nndc 852 xorcom 1399 xordidc 1410 sbn 1968 neirr 2373 dfrex2dc 2485 ddifstab 3292 dfss4st 3393 ssddif 3394 difin 3397 difundi 3412 difindiss 3414 indifdir 3416 rabeq0 3477 abeq0 3478 snprc 3684 difprsnss 3757 uni0b 3861 disjnim 4021 brdif 4083 unidif0 4197 dtruex 4592 dcextest 4614 difopab 4796 cnvdif 5073 imadiflem 5334 imadif 5335 brprcneu 5548 poxp 6287 finexdc 6960 snexxph 7011 infmoti 7089 ismkvnex 7216 pw1nel3 7293 onntri35 7299 netap 7316 prltlu 7549 recexprlemdisj 7692 axpre-apti 7947 dfinfre 8977 fzdifsuc 10150 fzp1nel 10173 ntreq0 14311 bj-nnor 15296 bj-nndcALT 15320 nnti 15555 |
Copyright terms: Public domain | W3C validator |