| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notbii | GIF version | ||
| Description: Equivalence property for negation. Inference form. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| notbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| notbii | ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | notbi 670 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnbi 682 xchnxbi 684 xchbinx 686 nndc 856 xorcom 1430 xordidc 1441 dcfromnotnotr 1490 dcfromcon 1491 sbn 2003 neirr 2409 dfrex2dc 2521 ddifstab 3336 dfss4st 3437 ssddif 3438 difin 3441 difundi 3456 difindiss 3458 indifdir 3460 rabeq0 3521 abeq0 3522 snprc 3731 difprsnss 3805 uni0b 3912 disjnim 4072 brdif 4136 unidif0 4250 dtruex 4650 dcextest 4672 difopab 4854 cnvdif 5134 imadiflem 5399 imadif 5400 brprcneu 5619 poxp 6376 finexdc 7060 snexxph 7113 infmoti 7191 ismkvnex 7318 pw1nel3 7412 onntri35 7418 netap 7436 prltlu 7670 recexprlemdisj 7813 axpre-apti 8068 dfinfre 9099 fzdifsuc 10273 fzp1nel 10296 swrdccatin2 11256 ntreq0 14800 bj-nnor 16056 bj-nndcALT 16080 nnti 16315 |
| Copyright terms: Public domain | W3C validator |