Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > notbii | GIF version |
Description: Equivalence property for negation. Inference form. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
notbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
notbii | ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | notbi 656 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sylnbi 668 xchnxbi 670 xchbinx 672 nndc 841 xorcom 1378 xordidc 1389 sbn 1940 neirr 2345 dfrex2dc 2457 ddifstab 3254 dfss4st 3355 ssddif 3356 difin 3359 difundi 3374 difindiss 3376 indifdir 3378 rabeq0 3438 abeq0 3439 snprc 3641 difprsnss 3711 uni0b 3814 disjnim 3973 brdif 4035 unidif0 4146 dtruex 4536 dcextest 4558 difopab 4737 cnvdif 5010 imadiflem 5267 imadif 5268 brprcneu 5479 poxp 6200 finexdc 6868 snexxph 6915 infmoti 6993 ismkvnex 7119 pw1nel3 7187 onntri35 7193 prltlu 7428 recexprlemdisj 7571 axpre-apti 7826 dfinfre 8851 fzdifsuc 10016 fzp1nel 10039 ntreq0 12772 bj-nnor 13615 bj-nndcALT 13639 nnti 13874 |
Copyright terms: Public domain | W3C validator |