| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notbii | GIF version | ||
| Description: Equivalence property for negation. Inference form. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| notbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| notbii | ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | notbi 667 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnbi 679 xchnxbi 681 xchbinx 683 nndc 852 xorcom 1399 xordidc 1410 dcfromnotnotr 1458 dcfromcon 1459 sbn 1971 neirr 2376 dfrex2dc 2488 ddifstab 3296 dfss4st 3397 ssddif 3398 difin 3401 difundi 3416 difindiss 3418 indifdir 3420 rabeq0 3481 abeq0 3482 snprc 3688 difprsnss 3761 uni0b 3865 disjnim 4025 brdif 4087 unidif0 4201 dtruex 4596 dcextest 4618 difopab 4800 cnvdif 5077 imadiflem 5338 imadif 5339 brprcneu 5554 poxp 6299 finexdc 6972 snexxph 7025 infmoti 7103 ismkvnex 7230 pw1nel3 7314 onntri35 7320 netap 7337 prltlu 7571 recexprlemdisj 7714 axpre-apti 7969 dfinfre 9000 fzdifsuc 10173 fzp1nel 10196 ntreq0 14452 bj-nnor 15464 bj-nndcALT 15488 nnti 15723 |
| Copyright terms: Public domain | W3C validator |