![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvex2v | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.) |
Ref | Expression |
---|---|
cbval2v.1 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvex2v | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑧𝜑 | |
2 | nfv 1539 | . 2 ⊢ Ⅎ𝑤𝜑 | |
3 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜓 | |
4 | nfv 1539 | . 2 ⊢ Ⅎ𝑦𝜓 | |
5 | cbval2v.1 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvex2 1934 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: cbvex4v 1942 th3qlem1 6663 |
Copyright terms: Public domain | W3C validator |