![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvald | GIF version |
Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2017. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) |
Ref | Expression |
---|---|
cbvald.1 | ⊢ Ⅎ𝑦𝜑 |
cbvald.2 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
cbvald.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
Ref | Expression |
---|---|
cbvald | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | cbvald.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | cbvald.2 | . 2 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
4 | nfv 1528 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
5 | 4 | a1i 9 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) |
6 | cbvald.3 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
7 | 1, 2, 3, 5, 6 | cbv2 1749 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 Ⅎwnf 1460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: cbvaldva 1928 |
Copyright terms: Public domain | W3C validator |