HomeHome Intuitionistic Logic Explorer
Theorem List (p. 20 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1901-2000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremchvarvv 1901* Version of chvarv 1930 with a disjoint variable condition. (Contributed by BJ, 31-May-2019.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   𝜑       𝜓
 
Theoremexdistr 1902* Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.)
(∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
 
Theoremexdistrv 1903* Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1895 and 19.42v 1899. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 1925. (Contributed by BJ, 30-Sep-2022.)
(∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
 
Theorem19.42vv 1904* Theorem 19.42 of [Margaris] p. 90 with 2 quantifiers. (Contributed by NM, 16-Mar-1995.)
(∃𝑥𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝜓))
 
Theorem19.42vvv 1905* Theorem 19.42 of [Margaris] p. 90 with 3 quantifiers. (Contributed by NM, 21-Sep-2011.)
(∃𝑥𝑦𝑧(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝑧𝜓))
 
Theorem19.42vvvv 1906* Theorem 19.42 of [Margaris] p. 90 with 4 quantifiers. (Contributed by Jim Kingdon, 23-Nov-2019.)
(∃𝑤𝑥𝑦𝑧(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑤𝑥𝑦𝑧𝜓))
 
Theoremexdistr2 1907* Distribution of existential quantifiers. (Contributed by NM, 17-Mar-1995.)
(∃𝑥𝑦𝑧(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝑧𝜓))
 
Theorem3exdistr 1908* Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒)))
 
Theorem4exdistr 1909* Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.)
(∃𝑥𝑦𝑧𝑤((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃))))
 
Theoremcbvalv 1910* Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theoremcbvexv 1911* Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theoremcbvalvw 1912* Change bound variable. See cbvalv 1910 for a version with fewer disjoint variable conditions. (Contributed by NM, 9-Apr-2017.) Avoid ax-7 1441. (Revised by Gino Giotto, 25-Aug-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theoremcbvexvw 1913* Change bound variable. See cbvexv 1911 for a version with fewer disjoint variable conditions. (Contributed by NM, 19-Apr-2017.) Avoid ax-7 1441. (Revised by Gino Giotto, 25-Aug-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theoremcbval2 1914* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 22-Dec-2003.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 22-Apr-2018.)
𝑧𝜑    &   𝑤𝜑    &   𝑥𝜓    &   𝑦𝜓    &   ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
 
Theoremcbvex2 1915* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 6-Oct-2016.)
𝑧𝜑    &   𝑤𝜑    &   𝑥𝜓    &   𝑦𝜓    &   ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝜓)
 
Theoremcbval2v 1916* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 4-Feb-2005.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
 
Theoremcbvex2v 1917* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝜓)
 
Theoremcbvald 1918* Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2010. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theoremcbvexdh 1919* Deduction used to change bound variables, using implicit substitition, particularly useful in conjunction with dvelim 2010. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 30-Dec-2017.)
(𝜑 → ∀𝑦𝜑)    &   (𝜑 → (𝜓 → ∀𝑦𝜓))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theoremcbvexd 1920* Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2010. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theoremcbvaldva 1921* Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theoremcbvexdva 1922* Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theoremcbvex4v 1923* Rule used to change bound variables, using implicit substitition. (Contributed by NM, 26-Jul-1995.)
((𝑥 = 𝑣𝑦 = 𝑢) → (𝜑𝜓))    &   ((𝑧 = 𝑓𝑤 = 𝑔) → (𝜓𝜒))       (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑣𝑢𝑓𝑔𝜒)
 
Theoremeean 1924 Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Revised by Mario Carneiro, 6-Oct-2016.)
𝑦𝜑    &   𝑥𝜓       (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
 
Theoremeeanv 1925* Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.)
(∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
 
Theoremeeeanv 1926* Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒))
 
Theoremee4anv 1927* Rearrange existential quantifiers. (Contributed by NM, 31-Jul-1995.)
(∃𝑥𝑦𝑧𝑤(𝜑𝜓) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝜓))
 
Theoremee8anv 1928* Rearrange existential quantifiers. (Contributed by Jim Kingdon, 23-Nov-2019.)
(∃𝑥𝑦𝑧𝑤𝑣𝑢𝑡𝑠(𝜑𝜓) ↔ (∃𝑥𝑦𝑧𝑤𝜑 ∧ ∃𝑣𝑢𝑡𝑠𝜓))
 
Theoremnexdv 1929* Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ¬ 𝜓)       (𝜑 → ¬ ∃𝑥𝜓)
 
Theoremchvarv 1930* Implicit substitution of 𝑦 for 𝑥 into a theorem. (Contributed by NM, 20-Apr-1994.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   𝜑       𝜓
 
1.4.5  More substitution theorems
 
Theoremhbs1 1931* 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by NM, 5-Aug-1993.) (Proof by Jim Kingdon, 16-Dec-2017.) (New usage is discouraged.)
([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theoremnfs1v 1932* 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥[𝑦 / 𝑥]𝜑
 
Theoremsbhb 1933* Two ways of expressing "𝑥 is (effectively) not free in 𝜑." (Contributed by NM, 29-May-2009.)
((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))
 
Theoremhbsbv 1934* This is a version of hbsb 1942 with an extra distinct variable constraint, on 𝑧 and 𝑥. (Contributed by Jim Kingdon, 25-Dec-2017.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
 
Theoremnfsbxy 1935* Similar to hbsb 1942 but with an extra distinct variable constraint, on 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Mar-2018.)
𝑧𝜑       𝑧[𝑦 / 𝑥]𝜑
 
Theoremnfsbxyt 1936* Closed form of nfsbxy 1935. (Contributed by Jim Kingdon, 9-May-2018.)
(∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
 
Theoremsbco2vlem 1937* This is a version of sbco2 1958 where 𝑧 is distinct from 𝑥 and from 𝑦. It is a lemma on the way to proving sbco2v 1941 which only requires that 𝑧 and 𝑥 be distinct. (Contributed by Jim Kingdon, 25-Dec-2017.) Remove one disjoint variable condition. (Revised by Jim Kingdon, 3-Feb-2018.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco2vh 1938* This is a version of sbco2 1958 where 𝑧 is distinct from 𝑥. (Contributed by Jim Kingdon, 12-Feb-2018.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremnfsb 1939* If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
𝑧𝜑       𝑧[𝑦 / 𝑥]𝜑
 
Theoremnfsbv 1940* If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is distinct from 𝑥 and 𝑦. Version of nfsb 1939 requiring more disjoint variables. (Contributed by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.)
𝑧𝜑       𝑧[𝑦 / 𝑥]𝜑
 
Theoremsbco2v 1941* Version of sbco2 1958 with disjoint variable conditions. (Contributed by Wolf Lammen, 29-Apr-2023.)
𝑧𝜑       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremhbsb 1942* If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by NM, 12-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
 
Theoremequsb3lem 1943* Lemma for equsb3 1944. (Contributed by NM, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
 
Theoremequsb3 1944* Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.)
([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
 
Theoremsbn 1945 Negation inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
 
Theoremsbim 1946 Implication inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
 
Theoremsbor 1947 Logical OR inside and outside of substitution are equivalent. (Contributed by NM, 29-Sep-2002.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
 
Theoremsban 1948 Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
 
Theoremsbrim 1949 Substitution with a variable not free in antecedent affects only the consequent. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
 
Theoremsblim 1950 Substitution with a variable not free in consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.)
𝑥𝜓       ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
 
Theoremsb3an 1951 Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.)
([𝑦 / 𝑥](𝜑𝜓𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))
 
Theoremsbbi 1952 Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
 
Theoremsblbis 1953 Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.)
([𝑦 / 𝑥]𝜑𝜓)       ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))
 
Theoremsbrbis 1954 Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.)
([𝑦 / 𝑥]𝜑𝜓)       ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒))
 
Theoremsbrbif 1955 Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.)
(𝜒 → ∀𝑥𝜒)    &   ([𝑦 / 𝑥]𝜑𝜓)       ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓𝜒))
 
Theoremsbco2yz 1956* This is a version of sbco2 1958 where 𝑧 is distinct from 𝑦. It is a lemma on the way to proving sbco2 1958 which has no distinct variable constraints. (Contributed by Jim Kingdon, 19-Mar-2018.)
𝑧𝜑       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco2h 1957 A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco2 1958 A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
𝑧𝜑       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco2d 1959 A composition law for substitution. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ∀𝑧𝜑)    &   (𝜑 → (𝜓 → ∀𝑧𝜓))       (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓))
 
Theoremsbco2vd 1960* Version of sbco2d 1959 with a distinct variable constraint between 𝑥 and 𝑧. (Contributed by Jim Kingdon, 19-Feb-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ∀𝑧𝜑)    &   (𝜑 → (𝜓 → ∀𝑧𝜓))       (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓))
 
Theoremsbco 1961 A composition law for substitution. (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco3v 1962* Version of sbco3 1967 with a distinct variable constraint between 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Feb-2018.)
([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
 
Theoremsbcocom 1963 Relationship between composition and commutativity for substitution. (Contributed by Jim Kingdon, 28-Feb-2018.)
([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)
 
Theoremsbcomv 1964* Version of sbcom 1968 with a distinct variable constraint between 𝑥 and 𝑧. (Contributed by Jim Kingdon, 28-Feb-2018.)
([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)
 
Theoremsbcomxyyz 1965* Version of sbcom 1968 with distinct variable constraints between 𝑥 and 𝑦, and 𝑦 and 𝑧. (Contributed by Jim Kingdon, 21-Mar-2018.)
([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)
 
Theoremsbco3xzyz 1966* Version of sbco3 1967 with distinct variable constraints between 𝑥 and 𝑧, and 𝑦 and 𝑧. Lemma for proving sbco3 1967. (Contributed by Jim Kingdon, 22-Mar-2018.)
([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
 
Theoremsbco3 1967 A composition law for substitution. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
 
Theoremsbcom 1968 A commutativity law for substitution. (Contributed by NM, 27-May-1997.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)
 
Theoremnfsbt 1969* Closed form of nfsb 1939. (Contributed by Jim Kingdon, 9-May-2018.)
(∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
 
Theoremnfsbd 1970* Deduction version of nfsb 1939. (Contributed by NM, 15-Feb-2013.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑧𝜓)       (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓)
 
Theoremsb9v 1971* Like sb9 1972 but with a distinct variable constraint between 𝑥 and 𝑦. (Contributed by Jim Kingdon, 28-Feb-2018.)
(∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsb9 1972 Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
(∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsb9i 1973 Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
(∀𝑥[𝑥 / 𝑦]𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsbnf2 1974* Two ways of expressing "𝑥 is (effectively) not free in 𝜑." (Contributed by Gérard Lang, 14-Nov-2013.) (Revised by Mario Carneiro, 6-Oct-2016.)
(Ⅎ𝑥𝜑 ↔ ∀𝑦𝑧([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑))
 
Theoremhbsbd 1975* Deduction version of hbsb 1942. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ∀𝑧𝜑)    &   (𝜑 → (𝜓 → ∀𝑧𝜓))       (𝜑 → ([𝑦 / 𝑥]𝜓 → ∀𝑧[𝑦 / 𝑥]𝜓))
 
Theorem2sb5 1976* Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)
([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑))
 
Theorem2sb6 1977* Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)
([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
 
Theoremsbcom2v 1978* Lemma for proving sbcom2 1980. It is the same as sbcom2 1980 but with additional distinct variable constraints on 𝑥 and 𝑦, and on 𝑤 and 𝑧. (Contributed by Jim Kingdon, 19-Feb-2018.)
([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
 
Theoremsbcom2v2 1979* Lemma for proving sbcom2 1980. It is the same as sbcom2v 1978 but removes the distinct variable constraint on 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Feb-2018.)
([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
 
Theoremsbcom2 1980* Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.) (Proof modified to be intuitionistic by Jim Kingdon, 19-Feb-2018.)
([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
 
Theoremsb6a 1981* Equivalence for substitution. (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑))
 
Theorem2sb5rf 1982* Reversed double substitution. (Contributed by NM, 3-Feb-2005.)
(𝜑 → ∀𝑧𝜑)    &   (𝜑 → ∀𝑤𝜑)       (𝜑 ↔ ∃𝑧𝑤((𝑧 = 𝑥𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑))
 
Theorem2sb6rf 1983* Reversed double substitution. (Contributed by NM, 3-Feb-2005.)
(𝜑 → ∀𝑧𝜑)    &   (𝜑 → ∀𝑤𝜑)       (𝜑 ↔ ∀𝑧𝑤((𝑧 = 𝑥𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑))
 
Theoremdfsb7 1984* An alternate definition of proper substitution df-sb 1756. By introducing a dummy variable 𝑧 in the definiens, we are able to eliminate any distinct variable restrictions among the variables 𝑥, 𝑦, and 𝜑 of the definiendum. No distinct variable conflicts arise because 𝑧 effectively insulates 𝑥 from 𝑦. To achieve this, we use a chain of two substitutions in the form of sb5 1880, first 𝑧 for 𝑥 then 𝑦 for 𝑧. Compare Definition 2.1'' of [Quine] p. 17. Theorem sb7f 1985 provides a version where 𝜑 and 𝑧 don't have to be distinct. (Contributed by NM, 28-Jan-2004.)
([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
 
Theoremsb7f 1985* This version of dfsb7 1984 does not require that 𝜑 and 𝑧 be disjoint. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-17 1519, i.e., that does not have the concept of a variable not occurring in a formula. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
 
Theoremsb7af 1986* An alternate definition of proper substitution df-sb 1756. Similar to dfsb7a 1987 but does not require that 𝜑 and 𝑧 be distinct. Similar to sb7f 1985 in that it involves a dummy variable 𝑧, but expressed in terms of rather than . (Contributed by Jim Kingdon, 5-Feb-2018.)
𝑧𝜑       ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧𝜑)))
 
Theoremdfsb7a 1987* An alternate definition of proper substitution df-sb 1756. Similar to dfsb7 1984 in that it involves a dummy variable 𝑧, but expressed in terms of rather than . For a version which only requires 𝑧𝜑 rather than 𝑧 and 𝜑 being distinct, see sb7af 1986. (Contributed by Jim Kingdon, 5-Feb-2018.)
([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧𝜑)))
 
Theoremsb10f 1988* Hao Wang's identity axiom P6 in Irving Copi, Symbolic Logic (5th ed., 1979), p. 328. In traditional predicate calculus, this is a sole axiom for identity from which the usual ones can be derived. (Contributed by NM, 9-May-2005.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑧]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑧]𝜑))
 
Theoremsbid2v 1989* An identity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
 
Theoremsbelx 1990* Elimination of substitution. (Contributed by NM, 5-Aug-1993.)
(𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑))
 
Theoremsbel2x 1991* Elimination of double substitution. (Contributed by NM, 5-Aug-1993.)
(𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑))
 
Theoremsbalyz 1992* Move universal quantifier in and out of substitution. Identical to sbal 1993 except that it has an additional distinct variable constraint on 𝑦 and 𝑧. (Contributed by Jim Kingdon, 29-Dec-2017.)
([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
 
Theoremsbal 1993* Move universal quantifier in and out of substitution. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.)
([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
 
Theoremsbal1yz 1994* Lemma for proving sbal1 1995. Same as sbal1 1995 but with an additional disjoint variable condition on 𝑦, 𝑧. (Contributed by Jim Kingdon, 23-Feb-2018.)
(¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
 
Theoremsbal1 1995* A theorem used in elimination of disjoint variable conditions on 𝑥, 𝑦 by replacing it with a distinctor ¬ ∀𝑥𝑥 = 𝑧. (Contributed by NM, 5-Aug-1993.) (Proof rewitten by Jim Kingdon, 24-Feb-2018.)
(¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
 
Theoremsbexyz 1996* Move existential quantifier in and out of substitution. Identical to sbex 1997 except that it has an additional disjoint variable condition on 𝑦, 𝑧. (Contributed by Jim Kingdon, 29-Dec-2017.)
([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
 
Theoremsbex 1997* Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.)
([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
 
Theoremsbalv 1998* Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993.)
([𝑦 / 𝑥]𝜑𝜓)       ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧𝜓)
 
Theoremsbco4lem 1999* Lemma for sbco4 2000. It replaces the temporary variable 𝑣 with another temporary variable 𝑤. (Contributed by Jim Kingdon, 26-Sep-2018.)
([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
 
Theoremsbco4 2000* Two ways of exchanging two variables. Both sides of the biconditional exchange 𝑥 and 𝑦, either via two temporary variables 𝑢 and 𝑣, or a single temporary 𝑤. (Contributed by Jim Kingdon, 25-Sep-2018.)
([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >