HomeHome Intuitionistic Logic Explorer
Theorem List (p. 20 of 137)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1901-2000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcbval2 1901* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 22-Dec-2003.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 22-Apr-2018.)
𝑧𝜑    &   𝑤𝜑    &   𝑥𝜓    &   𝑦𝜓    &   ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
 
Theoremcbvex2 1902* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 6-Oct-2016.)
𝑧𝜑    &   𝑤𝜑    &   𝑥𝜓    &   𝑦𝜓    &   ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝜓)
 
Theoremcbval2v 1903* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 4-Feb-2005.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
 
Theoremcbvex2v 1904* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝜓)
 
Theoremcbvald 1905* Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 1997. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theoremcbvexdh 1906* Deduction used to change bound variables, using implicit substitition, particularly useful in conjunction with dvelim 1997. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 30-Dec-2017.)
(𝜑 → ∀𝑦𝜑)    &   (𝜑 → (𝜓 → ∀𝑦𝜓))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theoremcbvexd 1907* Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 1997. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theoremcbvaldva 1908* Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theoremcbvexdva 1909* Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theoremcbvex4v 1910* Rule used to change bound variables, using implicit substitition. (Contributed by NM, 26-Jul-1995.)
((𝑥 = 𝑣𝑦 = 𝑢) → (𝜑𝜓))    &   ((𝑧 = 𝑓𝑤 = 𝑔) → (𝜓𝜒))       (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑣𝑢𝑓𝑔𝜒)
 
Theoremeean 1911 Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Revised by Mario Carneiro, 6-Oct-2016.)
𝑦𝜑    &   𝑥𝜓       (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
 
Theoremeeanv 1912* Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.)
(∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
 
Theoremeeeanv 1913* Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒))
 
Theoremee4anv 1914* Rearrange existential quantifiers. (Contributed by NM, 31-Jul-1995.)
(∃𝑥𝑦𝑧𝑤(𝜑𝜓) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝜓))
 
Theoremee8anv 1915* Rearrange existential quantifiers. (Contributed by Jim Kingdon, 23-Nov-2019.)
(∃𝑥𝑦𝑧𝑤𝑣𝑢𝑡𝑠(𝜑𝜓) ↔ (∃𝑥𝑦𝑧𝑤𝜑 ∧ ∃𝑣𝑢𝑡𝑠𝜓))
 
Theoremnexdv 1916* Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ¬ 𝜓)       (𝜑 → ¬ ∃𝑥𝜓)
 
Theoremchvarv 1917* Implicit substitution of 𝑦 for 𝑥 into a theorem. (Contributed by NM, 20-Apr-1994.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   𝜑       𝜓
 
1.4.5  More substitution theorems
 
Theoremhbs1 1918* 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by NM, 5-Aug-1993.) (Proof by Jim Kingdon, 16-Dec-2017.) (New usage is discouraged.)
([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theoremnfs1v 1919* 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥[𝑦 / 𝑥]𝜑
 
Theoremsbhb 1920* Two ways of expressing "𝑥 is (effectively) not free in 𝜑." (Contributed by NM, 29-May-2009.)
((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))
 
Theoremhbsbv 1921* This is a version of hbsb 1929 with an extra distinct variable constraint, on 𝑧 and 𝑥. (Contributed by Jim Kingdon, 25-Dec-2017.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
 
Theoremnfsbxy 1922* Similar to hbsb 1929 but with an extra distinct variable constraint, on 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Mar-2018.)
𝑧𝜑       𝑧[𝑦 / 𝑥]𝜑
 
Theoremnfsbxyt 1923* Closed form of nfsbxy 1922. (Contributed by Jim Kingdon, 9-May-2018.)
(∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
 
Theoremsbco2vlem 1924* This is a version of sbco2 1945 where 𝑧 is distinct from 𝑥 and from 𝑦. It is a lemma on the way to proving sbco2v 1928 which only requires that 𝑧 and 𝑥 be distinct. (Contributed by Jim Kingdon, 25-Dec-2017.) Remove one disjoint variable condition. (Revised by Jim Kingdon, 3-Feb-2018.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco2vh 1925* This is a version of sbco2 1945 where 𝑧 is distinct from 𝑥. (Contributed by Jim Kingdon, 12-Feb-2018.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremnfsb 1926* If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
𝑧𝜑       𝑧[𝑦 / 𝑥]𝜑
 
Theoremnfsbv 1927* If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is distinct from 𝑥 and 𝑦. Version of nfsb 1926 requiring more disjoint variables. (Contributed by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.)
𝑧𝜑       𝑧[𝑦 / 𝑥]𝜑
 
Theoremsbco2v 1928* Version of sbco2 1945 with disjoint variable conditions. (Contributed by Wolf Lammen, 29-Apr-2023.)
𝑧𝜑       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremhbsb 1929* If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by NM, 12-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
 
Theoremequsb3lem 1930* Lemma for equsb3 1931. (Contributed by NM, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
 
Theoremequsb3 1931* Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.)
([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
 
Theoremsbn 1932 Negation inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
 
Theoremsbim 1933 Implication inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
 
Theoremsbor 1934 Logical OR inside and outside of substitution are equivalent. (Contributed by NM, 29-Sep-2002.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
 
Theoremsban 1935 Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
 
Theoremsbrim 1936 Substitution with a variable not free in antecedent affects only the consequent. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
 
Theoremsblim 1937 Substitution with a variable not free in consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.)
𝑥𝜓       ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
 
Theoremsb3an 1938 Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.)
([𝑦 / 𝑥](𝜑𝜓𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))
 
Theoremsbbi 1939 Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
 
Theoremsblbis 1940 Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.)
([𝑦 / 𝑥]𝜑𝜓)       ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))
 
Theoremsbrbis 1941 Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.)
([𝑦 / 𝑥]𝜑𝜓)       ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒))
 
Theoremsbrbif 1942 Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.)
(𝜒 → ∀𝑥𝜒)    &   ([𝑦 / 𝑥]𝜑𝜓)       ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓𝜒))
 
Theoremsbco2yz 1943* This is a version of sbco2 1945 where 𝑧 is distinct from 𝑦. It is a lemma on the way to proving sbco2 1945 which has no distinct variable constraints. (Contributed by Jim Kingdon, 19-Mar-2018.)
𝑧𝜑       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco2h 1944 A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco2 1945 A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
𝑧𝜑       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco2d 1946 A composition law for substitution. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ∀𝑧𝜑)    &   (𝜑 → (𝜓 → ∀𝑧𝜓))       (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓))
 
Theoremsbco2vd 1947* Version of sbco2d 1946 with a distinct variable constraint between 𝑥 and 𝑧. (Contributed by Jim Kingdon, 19-Feb-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ∀𝑧𝜑)    &   (𝜑 → (𝜓 → ∀𝑧𝜓))       (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓))
 
Theoremsbco 1948 A composition law for substitution. (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco3v 1949* Version of sbco3 1954 with a distinct variable constraint between 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Feb-2018.)
([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
 
Theoremsbcocom 1950 Relationship between composition and commutativity for substitution. (Contributed by Jim Kingdon, 28-Feb-2018.)
([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)
 
Theoremsbcomv 1951* Version of sbcom 1955 with a distinct variable constraint between 𝑥 and 𝑧. (Contributed by Jim Kingdon, 28-Feb-2018.)
([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)
 
Theoremsbcomxyyz 1952* Version of sbcom 1955 with distinct variable constraints between 𝑥 and 𝑦, and 𝑦 and 𝑧. (Contributed by Jim Kingdon, 21-Mar-2018.)
([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)
 
Theoremsbco3xzyz 1953* Version of sbco3 1954 with distinct variable constraints between 𝑥 and 𝑧, and 𝑦 and 𝑧. Lemma for proving sbco3 1954. (Contributed by Jim Kingdon, 22-Mar-2018.)
([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
 
Theoremsbco3 1954 A composition law for substitution. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
 
Theoremsbcom 1955 A commutativity law for substitution. (Contributed by NM, 27-May-1997.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)
 
Theoremnfsbt 1956* Closed form of nfsb 1926. (Contributed by Jim Kingdon, 9-May-2018.)
(∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
 
Theoremnfsbd 1957* Deduction version of nfsb 1926. (Contributed by NM, 15-Feb-2013.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑧𝜓)       (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓)
 
Theoremsb9v 1958* Like sb9 1959 but with a distinct variable constraint between 𝑥 and 𝑦. (Contributed by Jim Kingdon, 28-Feb-2018.)
(∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsb9 1959 Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
(∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsb9i 1960 Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
(∀𝑥[𝑥 / 𝑦]𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsbnf2 1961* Two ways of expressing "𝑥 is (effectively) not free in 𝜑." (Contributed by Gérard Lang, 14-Nov-2013.) (Revised by Mario Carneiro, 6-Oct-2016.)
(Ⅎ𝑥𝜑 ↔ ∀𝑦𝑧([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑))
 
Theoremhbsbd 1962* Deduction version of hbsb 1929. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ∀𝑧𝜑)    &   (𝜑 → (𝜓 → ∀𝑧𝜓))       (𝜑 → ([𝑦 / 𝑥]𝜓 → ∀𝑧[𝑦 / 𝑥]𝜓))
 
Theorem2sb5 1963* Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)
([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑))
 
Theorem2sb6 1964* Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)
([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
 
Theoremsbcom2v 1965* Lemma for proving sbcom2 1967. It is the same as sbcom2 1967 but with additional distinct variable constraints on 𝑥 and 𝑦, and on 𝑤 and 𝑧. (Contributed by Jim Kingdon, 19-Feb-2018.)
([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
 
Theoremsbcom2v2 1966* Lemma for proving sbcom2 1967. It is the same as sbcom2v 1965 but removes the distinct variable constraint on 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Feb-2018.)
([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
 
Theoremsbcom2 1967* Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.) (Proof modified to be intuitionistic by Jim Kingdon, 19-Feb-2018.)
([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
 
Theoremsb6a 1968* Equivalence for substitution. (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑))
 
Theorem2sb5rf 1969* Reversed double substitution. (Contributed by NM, 3-Feb-2005.)
(𝜑 → ∀𝑧𝜑)    &   (𝜑 → ∀𝑤𝜑)       (𝜑 ↔ ∃𝑧𝑤((𝑧 = 𝑥𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑))
 
Theorem2sb6rf 1970* Reversed double substitution. (Contributed by NM, 3-Feb-2005.)
(𝜑 → ∀𝑧𝜑)    &   (𝜑 → ∀𝑤𝜑)       (𝜑 ↔ ∀𝑧𝑤((𝑧 = 𝑥𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑))
 
Theoremdfsb7 1971* An alternate definition of proper substitution df-sb 1743. By introducing a dummy variable 𝑧 in the definiens, we are able to eliminate any distinct variable restrictions among the variables 𝑥, 𝑦, and 𝜑 of the definiendum. No distinct variable conflicts arise because 𝑧 effectively insulates 𝑥 from 𝑦. To achieve this, we use a chain of two substitutions in the form of sb5 1867, first 𝑧 for 𝑥 then 𝑦 for 𝑧. Compare Definition 2.1'' of [Quine] p. 17. Theorem sb7f 1972 provides a version where 𝜑 and 𝑧 don't have to be distinct. (Contributed by NM, 28-Jan-2004.)
([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
 
Theoremsb7f 1972* This version of dfsb7 1971 does not require that 𝜑 and 𝑧 be disjoint. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-17 1506, i.e., that does not have the concept of a variable not occurring in a formula. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
 
Theoremsb7af 1973* An alternate definition of proper substitution df-sb 1743. Similar to dfsb7a 1974 but does not require that 𝜑 and 𝑧 be distinct. Similar to sb7f 1972 in that it involves a dummy variable 𝑧, but expressed in terms of rather than . (Contributed by Jim Kingdon, 5-Feb-2018.)
𝑧𝜑       ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧𝜑)))
 
Theoremdfsb7a 1974* An alternate definition of proper substitution df-sb 1743. Similar to dfsb7 1971 in that it involves a dummy variable 𝑧, but expressed in terms of rather than . For a version which only requires 𝑧𝜑 rather than 𝑧 and 𝜑 being distinct, see sb7af 1973. (Contributed by Jim Kingdon, 5-Feb-2018.)
([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧𝜑)))
 
Theoremsb10f 1975* Hao Wang's identity axiom P6 in Irving Copi, Symbolic Logic (5th ed., 1979), p. 328. In traditional predicate calculus, this is a sole axiom for identity from which the usual ones can be derived. (Contributed by NM, 9-May-2005.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑧]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑧]𝜑))
 
Theoremsbid2v 1976* An identity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
 
Theoremsbelx 1977* Elimination of substitution. (Contributed by NM, 5-Aug-1993.)
(𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑))
 
Theoremsbel2x 1978* Elimination of double substitution. (Contributed by NM, 5-Aug-1993.)
(𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑))
 
Theoremsbalyz 1979* Move universal quantifier in and out of substitution. Identical to sbal 1980 except that it has an additional distinct variable constraint on 𝑦 and 𝑧. (Contributed by Jim Kingdon, 29-Dec-2017.)
([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
 
Theoremsbal 1980* Move universal quantifier in and out of substitution. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.)
([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
 
Theoremsbal1yz 1981* Lemma for proving sbal1 1982. Same as sbal1 1982 but with an additional disjoint variable condition on 𝑦, 𝑧. (Contributed by Jim Kingdon, 23-Feb-2018.)
(¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
 
Theoremsbal1 1982* A theorem used in elimination of disjoint variable conditions on 𝑥, 𝑦 by replacing it with a distinctor ¬ ∀𝑥𝑥 = 𝑧. (Contributed by NM, 5-Aug-1993.) (Proof rewitten by Jim Kingdon, 24-Feb-2018.)
(¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
 
Theoremsbexyz 1983* Move existential quantifier in and out of substitution. Identical to sbex 1984 except that it has an additional disjoint variable condition on 𝑦, 𝑧. (Contributed by Jim Kingdon, 29-Dec-2017.)
([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
 
Theoremsbex 1984* Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.)
([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
 
Theoremsbalv 1985* Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993.)
([𝑦 / 𝑥]𝜑𝜓)       ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧𝜓)
 
Theoremsbco4lem 1986* Lemma for sbco4 1987. It replaces the temporary variable 𝑣 with another temporary variable 𝑤. (Contributed by Jim Kingdon, 26-Sep-2018.)
([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
 
Theoremsbco4 1987* Two ways of exchanging two variables. Both sides of the biconditional exchange 𝑥 and 𝑦, either via two temporary variables 𝑢 and 𝑣, or a single temporary 𝑤. (Contributed by Jim Kingdon, 25-Sep-2018.)
([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
 
Theoremexsb 1988* An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.)
(∃𝑥𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
 
Theorem2exsb 1989* An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005.)
(∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
 
TheoremdvelimALT 1990* Version of dvelim 1997 that doesn't use ax-10 1485. Because it has different distinct variable constraints than dvelim 1997 and is used in important proofs, it would be better if it had a name which does not end in ALT (ideally more close to set.mm naming). (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝑧 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremdvelimfv 1991* Like dvelimf 1995 but with a distinct variable constraint on 𝑥 and 𝑧. (Contributed by Jim Kingdon, 6-Mar-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑧𝜓)    &   (𝑧 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremhbsb4 1992 A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
(𝜑 → ∀𝑧𝜑)       (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))
 
Theoremhbsb4t 1993 A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 1992). (Contributed by NM, 7-Apr-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(∀𝑥𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))
 
Theoremnfsb4t 1994 A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 1992). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof rewritten by Jim Kingdon, 9-May-2018.)
(∀𝑥𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))
 
Theoremdvelimf 1995 Version of dvelim 1997 without any variable restrictions. (Contributed by NM, 1-Oct-2002.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑧𝜓)    &   (𝑧 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremdvelimdf 1996 Deduction form of dvelimf 1995. This version may be useful if we want to avoid ax-17 1506 and use ax-16 1794 instead. (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.)
𝑥𝜑    &   𝑧𝜑    &   (𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → Ⅎ𝑧𝜒)    &   (𝜑 → (𝑧 = 𝑦 → (𝜓𝜒)))       (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒))
 
Theoremdvelim 1997* This theorem can be used to eliminate a distinct variable restriction on 𝑥 and 𝑧 and replace it with the "distinctor" ¬ ∀𝑥𝑥 = 𝑦 as an antecedent. 𝜑 normally has 𝑧 free and can be read 𝜑(𝑧), and 𝜓 substitutes 𝑦 for 𝑧 and can be read 𝜑(𝑦). We don't require that 𝑥 and 𝑦 be distinct: if they aren't, the distinctor will become false (in multiple-element domains of discourse) and "protect" the consequent.

To obtain a closed-theorem form of this inference, prefix the hypotheses with 𝑥𝑧, conjoin them, and apply dvelimdf 1996.

Other variants of this theorem are dvelimf 1995 (with no distinct variable restrictions) and dvelimALT 1990 (that avoids ax-10 1485). (Contributed by NM, 23-Nov-1994.)

(𝜑 → ∀𝑥𝜑)    &   (𝑧 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremdvelimor 1998* Disjunctive distinct variable constraint elimination. A user of this theorem starts with a formula 𝜑 (containing 𝑧) and a distinct variable constraint between 𝑥 and 𝑧. The theorem makes it possible to replace the distinct variable constraint with the disjunct 𝑥𝑥 = 𝑦 (𝜓 is just a version of 𝜑 with 𝑦 substituted for 𝑧). (Contributed by Jim Kingdon, 11-May-2018.)
𝑥𝜑    &   (𝑧 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥𝜓)
 
Theoremdveeq1 1999* Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 19-Feb-2018.)
(¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
 
Theoremsbal2 2000* Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002.)
(¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13614
  Copyright terms: Public domain < Previous  Next >