HomeHome Intuitionistic Logic Explorer
Theorem List (p. 20 of 158)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1901-2000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsb6 1901* Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.)
([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theoremsb5 1902* Equivalence for substitution. Similar to Theorem 6.1 of [Quine] p. 40. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.)
([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremsbnv 1903* Version of sbn 1971 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 18-Dec-2017.)
([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
 
Theoremsbanv 1904* Version of sban 1974 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 24-Dec-2017.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
 
Theoremsborv 1905* Version of sbor 1973 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
 
Theoremsbi1v 1906* Forward direction of sbimv 1908. (Contributed by Jim Kingdon, 25-Dec-2017.)
([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
 
Theoremsbi2v 1907* Reverse direction of sbimv 1908. (Contributed by Jim Kingdon, 18-Jan-2018.)
(([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑𝜓))
 
Theoremsbimv 1908* Intuitionistic proof of sbim 1972 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 18-Jan-2018.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
 
Theoremsblimv 1909* Version of sblim 1976 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 19-Jan-2018.)
(𝜓 → ∀𝑥𝜓)       ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
 
Theorempm11.53 1910* Theorem *11.53 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.)
(∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))
 
Theoremexlimivv 1911* Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.)
(𝜑𝜓)       (∃𝑥𝑦𝜑𝜓)
 
Theoremexlimdvv 1912* Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝑦𝜓𝜒))
 
Theoremexlimddv 1913* Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.)
(𝜑 → ∃𝑥𝜓)    &   ((𝜑𝜓) → 𝜒)       (𝜑𝜒)
 
Theorem19.27v 1914* Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 3-Jun-2004.)
(∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
 
Theorem19.28v 1915* Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 25-Mar-2004.)
(∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
 
Theorem19.36aiv 1916* Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
𝑥(𝜑𝜓)       (∀𝑥𝜑𝜓)
 
Theorem19.41v 1917* Special case of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theorem19.41vv 1918* Theorem 19.41 of [Margaris] p. 90 with 2 quantifiers. (Contributed by NM, 30-Apr-1995.)
(∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
 
Theorem19.41vvv 1919* Theorem 19.41 of [Margaris] p. 90 with 3 quantifiers. (Contributed by NM, 30-Apr-1995.)
(∃𝑥𝑦𝑧(𝜑𝜓) ↔ (∃𝑥𝑦𝑧𝜑𝜓))
 
Theorem19.41vvvv 1920* Theorem 19.41 of [Margaris] p. 90 with 4 quantifiers. (Contributed by FL, 14-Jul-2007.)
(∃𝑤𝑥𝑦𝑧(𝜑𝜓) ↔ (∃𝑤𝑥𝑦𝑧𝜑𝜓))
 
Theorem19.42v 1921* Special case of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))
 
Theoremspvv 1922* Version of spv 1874 with a disjoint variable condition. (Contributed by BJ, 31-May-2019.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜓)
 
Theoremchvarvv 1923* Version of chvarv 1956 with a disjoint variable condition. (Contributed by BJ, 31-May-2019.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   𝜑       𝜓
 
Theoremexdistr 1924* Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.)
(∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
 
Theoremexdistrv 1925* Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v 1917 and 19.42v 1921. For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv 1951. (Contributed by BJ, 30-Sep-2022.)
(∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
 
Theorem19.42vv 1926* Theorem 19.42 of [Margaris] p. 90 with 2 quantifiers. (Contributed by NM, 16-Mar-1995.)
(∃𝑥𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝜓))
 
Theorem19.42vvv 1927* Theorem 19.42 of [Margaris] p. 90 with 3 quantifiers. (Contributed by NM, 21-Sep-2011.)
(∃𝑥𝑦𝑧(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝑧𝜓))
 
Theorem19.42vvvv 1928* Theorem 19.42 of [Margaris] p. 90 with 4 quantifiers. (Contributed by Jim Kingdon, 23-Nov-2019.)
(∃𝑤𝑥𝑦𝑧(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑤𝑥𝑦𝑧𝜓))
 
Theoremexdistr2 1929* Distribution of existential quantifiers. (Contributed by NM, 17-Mar-1995.)
(∃𝑥𝑦𝑧(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝑧𝜓))
 
Theorem3exdistr 1930* Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒)))
 
Theorem4exdistr 1931* Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.)
(∃𝑥𝑦𝑧𝑤((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃))))
 
Theoremcbvalv 1932* Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theoremcbvexv 1933* Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theoremcbvalvw 1934* Change bound variable. See cbvalv 1932 for a version with fewer disjoint variable conditions. (Contributed by NM, 9-Apr-2017.) Avoid ax-7 1462. (Revised by GG, 25-Aug-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theoremcbvexvw 1935* Change bound variable. See cbvexv 1933 for a version with fewer disjoint variable conditions. (Contributed by NM, 19-Apr-2017.) Avoid ax-7 1462. (Revised by GG, 25-Aug-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theoremcbval2 1936* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 22-Dec-2003.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 22-Apr-2018.)
𝑧𝜑    &   𝑤𝜑    &   𝑥𝜓    &   𝑦𝜓    &   ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
 
Theoremcbvex2 1937* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 6-Oct-2016.)
𝑧𝜑    &   𝑤𝜑    &   𝑥𝜓    &   𝑦𝜓    &   ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝜓)
 
Theoremcbval2v 1938* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 4-Feb-2005.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
 
Theoremcbvex2v 1939* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝜓)
 
Theoremcbvald 1940* Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2036. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theoremcbvexdh 1941* Deduction used to change bound variables, using implicit substitition, particularly useful in conjunction with dvelim 2036. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 30-Dec-2017.)
(𝜑 → ∀𝑦𝜑)    &   (𝜑 → (𝜓 → ∀𝑦𝜓))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theoremcbvexd 1942* Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2036. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜓)    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theoremcbvaldva 1943* Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theoremcbvexdva 1944* Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theoremcbvaldvaw 1945* Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. Version of cbvaldva 1943 with a disjoint variable condition. (Contributed by David Moews, 1-May-2017.) (Revised by GG, 10-Jan-2024.) (Revised by Wolf Lammen, 10-Feb-2024.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theoremcbvexdvaw 1946* Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. Version of cbvexdva 1944 with a disjoint variable condition. (Contributed by David Moews, 1-May-2017.) (Revised by GG, 10-Jan-2024.) (Revised by Wolf Lammen, 10-Feb-2024.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theoremcbval2vw 1947* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 4-Feb-2005.) (Revised by GG, 10-Jan-2024.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
 
Theoremcbvex2vw 1948* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.) (Revised by GG, 10-Jan-2024.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝜓)
 
Theoremcbvex4v 1949* Rule used to change bound variables, using implicit substitition. (Contributed by NM, 26-Jul-1995.)
((𝑥 = 𝑣𝑦 = 𝑢) → (𝜑𝜓))    &   ((𝑧 = 𝑓𝑤 = 𝑔) → (𝜓𝜒))       (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑣𝑢𝑓𝑔𝜒)
 
Theoremeean 1950 Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Revised by Mario Carneiro, 6-Oct-2016.)
𝑦𝜑    &   𝑥𝜓       (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
 
Theoremeeanv 1951* Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.)
(∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
 
Theoremeeeanv 1952* Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(∃𝑥𝑦𝑧(𝜑𝜓𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒))
 
Theoremee4anv 1953* Rearrange existential quantifiers. (Contributed by NM, 31-Jul-1995.)
(∃𝑥𝑦𝑧𝑤(𝜑𝜓) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝜓))
 
Theoremee8anv 1954* Rearrange existential quantifiers. (Contributed by Jim Kingdon, 23-Nov-2019.)
(∃𝑥𝑦𝑧𝑤𝑣𝑢𝑡𝑠(𝜑𝜓) ↔ (∃𝑥𝑦𝑧𝑤𝜑 ∧ ∃𝑣𝑢𝑡𝑠𝜓))
 
Theoremnexdv 1955* Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ¬ 𝜓)       (𝜑 → ¬ ∃𝑥𝜓)
 
Theoremchvarv 1956* Implicit substitution of 𝑦 for 𝑥 into a theorem. (Contributed by NM, 20-Apr-1994.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   𝜑       𝜓
 
1.4.5  More substitution theorems
 
Theoremhbs1 1957* 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by NM, 5-Aug-1993.) (Proof by Jim Kingdon, 16-Dec-2017.) (New usage is discouraged.)
([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 
Theoremnfs1v 1958* 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥[𝑦 / 𝑥]𝜑
 
Theoremsbhb 1959* Two ways of expressing "𝑥 is (effectively) not free in 𝜑." (Contributed by NM, 29-May-2009.)
((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))
 
Theoremhbsbv 1960* This is a version of hbsb 1968 with an extra distinct variable constraint, on 𝑧 and 𝑥. (Contributed by Jim Kingdon, 25-Dec-2017.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
 
Theoremnfsbxy 1961* Similar to hbsb 1968 but with an extra distinct variable constraint, on 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Mar-2018.)
𝑧𝜑       𝑧[𝑦 / 𝑥]𝜑
 
Theoremnfsbxyt 1962* Closed form of nfsbxy 1961. (Contributed by Jim Kingdon, 9-May-2018.)
(∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
 
Theoremsbco2vlem 1963* This is a version of sbco2 1984 where 𝑧 is distinct from 𝑥 and from 𝑦. It is a lemma on the way to proving sbco2v 1967 which only requires that 𝑧 and 𝑥 be distinct. (Contributed by Jim Kingdon, 25-Dec-2017.) Remove one disjoint variable condition. (Revised by Jim Kingdon, 3-Feb-2018.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco2vh 1964* This is a version of sbco2 1984 where 𝑧 is distinct from 𝑥. (Contributed by Jim Kingdon, 12-Feb-2018.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremnfsb 1965* If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
𝑧𝜑       𝑧[𝑦 / 𝑥]𝜑
 
Theoremnfsbv 1966* If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is distinct from 𝑥 and 𝑦. Version of nfsb 1965 requiring more disjoint variables. (Contributed by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
𝑧𝜑       𝑧[𝑦 / 𝑥]𝜑
 
Theoremsbco2v 1967* Version of sbco2 1984 with disjoint variable conditions. (Contributed by Wolf Lammen, 29-Apr-2023.)
𝑧𝜑       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremhbsb 1968* If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by NM, 12-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
 
Theoremequsb3lem 1969* Lemma for equsb3 1970. (Contributed by NM, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
 
Theoremequsb3 1970* Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.)
([𝑦 / 𝑥]𝑥 = 𝑧𝑦 = 𝑧)
 
Theoremsbn 1971 Negation inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
 
Theoremsbim 1972 Implication inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
 
Theoremsbor 1973 Logical OR inside and outside of substitution are equivalent. (Contributed by NM, 29-Sep-2002.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
 
Theoremsban 1974 Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
 
Theoremsbrim 1975 Substitution with a variable not free in antecedent affects only the consequent. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
 
Theoremsblim 1976 Substitution with a variable not free in consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.)
𝑥𝜓       ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
 
Theoremsb3an 1977 Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.)
([𝑦 / 𝑥](𝜑𝜓𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))
 
Theoremsbbi 1978 Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
 
Theoremsblbis 1979 Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.)
([𝑦 / 𝑥]𝜑𝜓)       ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))
 
Theoremsbrbis 1980 Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.)
([𝑦 / 𝑥]𝜑𝜓)       ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒))
 
Theoremsbrbif 1981 Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.)
(𝜒 → ∀𝑥𝜒)    &   ([𝑦 / 𝑥]𝜑𝜓)       ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓𝜒))
 
Theoremsbco2yz 1982* This is a version of sbco2 1984 where 𝑧 is distinct from 𝑦. It is a lemma on the way to proving sbco2 1984 which has no distinct variable constraints. (Contributed by Jim Kingdon, 19-Mar-2018.)
𝑧𝜑       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco2h 1983 A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco2 1984 A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
𝑧𝜑       ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco2d 1985 A composition law for substitution. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ∀𝑧𝜑)    &   (𝜑 → (𝜓 → ∀𝑧𝜓))       (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓))
 
Theoremsbco2vd 1986* Version of sbco2d 1985 with a distinct variable constraint between 𝑥 and 𝑧. (Contributed by Jim Kingdon, 19-Feb-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ∀𝑧𝜑)    &   (𝜑 → (𝜓 → ∀𝑧𝜓))       (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓))
 
Theoremsbco 1987 A composition law for substitution. (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theoremsbco3v 1988* Version of sbco3 1993 with a distinct variable constraint between 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Feb-2018.)
([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
 
Theoremsbcocom 1989 Relationship between composition and commutativity for substitution. (Contributed by Jim Kingdon, 28-Feb-2018.)
([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)
 
Theoremsbcomv 1990* Version of sbcom 1994 with a distinct variable constraint between 𝑥 and 𝑧. (Contributed by Jim Kingdon, 28-Feb-2018.)
([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)
 
Theoremsbcomxyyz 1991* Version of sbcom 1994 with distinct variable constraints between 𝑥 and 𝑦, and 𝑦 and 𝑧. (Contributed by Jim Kingdon, 21-Mar-2018.)
([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)
 
Theoremsbco3xzyz 1992* Version of sbco3 1993 with distinct variable constraints between 𝑥 and 𝑧, and 𝑦 and 𝑧. Lemma for proving sbco3 1993. (Contributed by Jim Kingdon, 22-Mar-2018.)
([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
 
Theoremsbco3 1993 A composition law for substitution. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
 
Theoremsbcom 1994 A commutativity law for substitution. (Contributed by NM, 27-May-1997.) (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑)
 
Theoremnfsbt 1995* Closed form of nfsb 1965. (Contributed by Jim Kingdon, 9-May-2018.)
(∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
 
Theoremnfsbd 1996* Deduction version of nfsb 1965. (Contributed by NM, 15-Feb-2013.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑧𝜓)       (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓)
 
Theoremsb9v 1997* Like sb9 1998 but with a distinct variable constraint between 𝑥 and 𝑦. (Contributed by Jim Kingdon, 28-Feb-2018.)
(∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsb9 1998 Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
(∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsb9i 1999 Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
(∀𝑥[𝑥 / 𝑦]𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsbnf2 2000* Two ways of expressing "𝑥 is (effectively) not free in 𝜑." (Contributed by Gérard Lang, 14-Nov-2013.) (Revised by Mario Carneiro, 6-Oct-2016.)
(Ⅎ𝑥𝜑 ↔ ∀𝑦𝑧([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15728
  Copyright terms: Public domain < Previous  Next >