Theorem List for Intuitionistic Logic Explorer - 1901-2000   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | sb6 1901* | 
Equivalence for substitution.  Compare Theorem 6.2 of [Quine] p. 40.
       Also proved as Lemmas 16 and 17 of [Tarski] p. 70.  (Contributed by NM,
       18-Aug-1993.)  (Revised by NM, 14-Apr-2008.)
 | 
| ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | 
|   | 
| Theorem | sb5 1902* | 
Equivalence for substitution.  Similar to Theorem 6.1 of [Quine] p. 40.
       (Contributed by NM, 18-Aug-1993.)  (Revised by NM, 14-Apr-2008.)
 | 
| ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | 
|   | 
| Theorem | sbnv 1903* | 
Version of sbn 1971 where 𝑥 and 𝑦 are distinct. 
(Contributed by
       Jim Kingdon, 18-Dec-2017.)
 | 
| ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | 
|   | 
| Theorem | sbanv 1904* | 
Version of sban 1974 where 𝑥 and 𝑦 are distinct. 
(Contributed by
       Jim Kingdon, 24-Dec-2017.)
 | 
| ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | 
|   | 
| Theorem | sborv 1905* | 
Version of sbor 1973 where 𝑥 and 𝑦 are distinct. 
(Contributed by
       Jim Kingdon, 3-Feb-2018.)
 | 
| ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) | 
|   | 
| Theorem | sbi1v 1906* | 
Forward direction of sbimv 1908.  (Contributed by Jim Kingdon,
       25-Dec-2017.)
 | 
| ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | 
|   | 
| Theorem | sbi2v 1907* | 
Reverse direction of sbimv 1908.  (Contributed by Jim Kingdon,
       18-Jan-2018.)
 | 
| ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) | 
|   | 
| Theorem | sbimv 1908* | 
Intuitionistic proof of sbim 1972 where 𝑥 and 𝑦 are distinct.
       (Contributed by Jim Kingdon, 18-Jan-2018.)
 | 
| ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | 
|   | 
| Theorem | sblimv 1909* | 
Version of sblim 1976 where 𝑥 and 𝑦 are distinct. 
(Contributed by
       Jim Kingdon, 19-Jan-2018.)
 | 
| ⊢ (𝜓 → ∀𝑥𝜓)    ⇒   ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓)) | 
|   | 
| Theorem | pm11.53 1910* | 
Theorem *11.53 in [WhiteheadRussell]
p. 164.  (Contributed by Andrew
       Salmon, 24-May-2011.)
 | 
| ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)) | 
|   | 
| Theorem | exlimivv 1911* | 
Inference from Theorem 19.23 of [Margaris] p.
90.  (Contributed by NM,
       1-Aug-1995.)
 | 
| ⊢ (𝜑 → 𝜓)    ⇒   ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) | 
|   | 
| Theorem | exlimdvv 1912* | 
Deduction from Theorem 19.23 of [Margaris] p.
90.  (Contributed by NM,
       31-Jul-1995.)
 | 
| ⊢ (𝜑 → (𝜓 → 𝜒))    ⇒   ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) | 
|   | 
| Theorem | exlimddv 1913* | 
Existential elimination rule of natural deduction.  (Contributed by
       Mario Carneiro, 15-Jun-2016.)
 | 
| ⊢ (𝜑 → ∃𝑥𝜓)   
 &   ⊢ ((𝜑 ∧ 𝜓) → 𝜒)    ⇒   ⊢ (𝜑 → 𝜒) | 
|   | 
| Theorem | 19.27v 1914* | 
Theorem 19.27 of [Margaris] p. 90. 
(Contributed by NM, 3-Jun-2004.)
 | 
| ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ 𝜓)) | 
|   | 
| Theorem | 19.28v 1915* | 
Theorem 19.28 of [Margaris] p. 90. 
(Contributed by NM, 25-Mar-2004.)
 | 
| ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) | 
|   | 
| Theorem | 19.36aiv 1916* | 
Inference from Theorem 19.36 of [Margaris] p.
90.  (Contributed by NM,
       5-Aug-1993.)
 | 
| ⊢ ∃𝑥(𝜑 → 𝜓)    ⇒   ⊢ (∀𝑥𝜑 → 𝜓) | 
|   | 
| Theorem | 19.41v 1917* | 
Special case of Theorem 19.41 of [Margaris] p.
90.  (Contributed by NM,
       5-Aug-1993.)
 | 
| ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) | 
|   | 
| Theorem | 19.41vv 1918* | 
Theorem 19.41 of [Margaris] p. 90 with 2
quantifiers.  (Contributed by
       NM, 30-Apr-1995.)
 | 
| ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) | 
|   | 
| Theorem | 19.41vvv 1919* | 
Theorem 19.41 of [Margaris] p. 90 with 3
quantifiers.  (Contributed by
       NM, 30-Apr-1995.)
 | 
| ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) | 
|   | 
| Theorem | 19.41vvvv 1920* | 
Theorem 19.41 of [Margaris] p. 90 with 4
quantifiers.  (Contributed by
       FL, 14-Jul-2007.)
 | 
| ⊢ (∃𝑤∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (∃𝑤∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) | 
|   | 
| Theorem | 19.42v 1921* | 
Special case of Theorem 19.42 of [Margaris] p.
90.  (Contributed by NM,
       5-Aug-1993.)
 | 
| ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | 
|   | 
| Theorem | spvv 1922* | 
Version of spv 1874 with a disjoint variable condition. 
(Contributed by
       BJ, 31-May-2019.)
 | 
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓))    ⇒   ⊢ (∀𝑥𝜑 → 𝜓) | 
|   | 
| Theorem | chvarvv 1923* | 
Version of chvarv 1956 with a disjoint variable condition. 
(Contributed by
       BJ, 31-May-2019.)
 | 
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓))    &   ⊢ 𝜑    ⇒   ⊢ 𝜓 | 
|   | 
| Theorem | exdistr 1924* | 
Distribution of existential quantifiers.  (Contributed by NM,
       9-Mar-1995.)
 | 
| ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | 
|   | 
| Theorem | exdistrv 1925* | 
Distribute a pair of existential quantifiers (over disjoint variables)
       over a conjunction.  Combination of 19.41v 1917 and 19.42v 1921.  For a
       version with fewer disjoint variable conditions but requiring more
       axioms, see eeanv 1951.  (Contributed by BJ, 30-Sep-2022.)
 | 
| ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | 
|   | 
| Theorem | 19.42vv 1926* | 
Theorem 19.42 of [Margaris] p. 90 with 2
quantifiers.  (Contributed by
       NM, 16-Mar-1995.)
 | 
| ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) | 
|   | 
| Theorem | 19.42vvv 1927* | 
Theorem 19.42 of [Margaris] p. 90 with 3
quantifiers.  (Contributed by
       NM, 21-Sep-2011.)
 | 
| ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦∃𝑧𝜓)) | 
|   | 
| Theorem | 19.42vvvv 1928* | 
Theorem 19.42 of [Margaris] p. 90 with 4
quantifiers.  (Contributed by
       Jim Kingdon, 23-Nov-2019.)
 | 
| ⊢ (∃𝑤∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑤∃𝑥∃𝑦∃𝑧𝜓)) | 
|   | 
| Theorem | exdistr2 1929* | 
Distribution of existential quantifiers.  (Contributed by NM,
       17-Mar-1995.)
 | 
| ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦∃𝑧𝜓)) | 
|   | 
| Theorem | 3exdistr 1930* | 
Distribution of existential quantifiers.  (Contributed by NM,
       9-Mar-1995.)  (Proof shortened by Andrew Salmon, 25-May-2011.)
 | 
| ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒))) | 
|   | 
| Theorem | 4exdistr 1931* | 
Distribution of existential quantifiers.  (Contributed by NM,
       9-Mar-1995.)
 | 
| ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))) | 
|   | 
| Theorem | cbvalv 1932* | 
Rule used to change bound variables, using implicit substitition.
       (Contributed by NM, 5-Aug-1993.)
 | 
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓))    ⇒   ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | 
|   | 
| Theorem | cbvexv 1933* | 
Rule used to change bound variables, using implicit substitition.
       (Contributed by NM, 5-Aug-1993.)
 | 
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓))    ⇒   ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | 
|   | 
| Theorem | cbvalvw 1934* | 
Change bound variable.  See cbvalv 1932 for a version with fewer disjoint
       variable conditions.  (Contributed by NM, 9-Apr-2017.)  Avoid ax-7 1462.
       (Revised by GG, 25-Aug-2024.)
 | 
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓))    ⇒   ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | 
|   | 
| Theorem | cbvexvw 1935* | 
Change bound variable.  See cbvexv 1933 for a version with fewer disjoint
       variable conditions.  (Contributed by NM, 19-Apr-2017.)  Avoid ax-7 1462.
       (Revised by GG, 25-Aug-2024.)
 | 
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓))    ⇒   ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | 
|   | 
| Theorem | cbval2 1936* | 
Rule used to change bound variables, using implicit substitution.
       (Contributed by NM, 22-Dec-2003.)  (Revised by Mario Carneiro,
       6-Oct-2016.)  (Proof shortened by Wolf Lammen, 22-Apr-2018.)
 | 
| ⊢ Ⅎ𝑧𝜑   
 &   ⊢ Ⅎ𝑤𝜑   
 &   ⊢ Ⅎ𝑥𝜓   
 &   ⊢ Ⅎ𝑦𝜓   
 &   ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓))    ⇒   ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) | 
|   | 
| Theorem | cbvex2 1937* | 
Rule used to change bound variables, using implicit substitution.
       (Contributed by NM, 14-Sep-2003.)  (Revised by Mario Carneiro,
       6-Oct-2016.)
 | 
| ⊢ Ⅎ𝑧𝜑   
 &   ⊢ Ⅎ𝑤𝜑   
 &   ⊢ Ⅎ𝑥𝜓   
 &   ⊢ Ⅎ𝑦𝜓   
 &   ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓))    ⇒   ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) | 
|   | 
| Theorem | cbval2v 1938* | 
Rule used to change bound variables, using implicit substitution.
       (Contributed by NM, 4-Feb-2005.)
 | 
| ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓))    ⇒   ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) | 
|   | 
| Theorem | cbvex2v 1939* | 
Rule used to change bound variables, using implicit substitution.
       (Contributed by NM, 26-Jul-1995.)
 | 
| ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓))    ⇒   ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) | 
|   | 
| Theorem | cbvald 1940* | 
Deduction used to change bound variables, using implicit substitution,
       particularly useful in conjunction with dvelim 2036.  (Contributed by NM,
       2-Jan-2002.)  (Revised by Mario Carneiro, 6-Oct-2016.)  (Revised by Wolf
       Lammen, 13-May-2018.)
 | 
| ⊢ Ⅎ𝑦𝜑   
 &   ⊢ (𝜑 → Ⅎ𝑦𝜓)   
 &   ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)))    ⇒   ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | 
|   | 
| Theorem | cbvexdh 1941* | 
Deduction used to change bound variables, using implicit substitition,
       particularly useful in conjunction with dvelim 2036.  (Contributed by NM,
       2-Jan-2002.)  (Proof rewritten by Jim Kingdon, 30-Dec-2017.)
 | 
| ⊢ (𝜑 → ∀𝑦𝜑)   
 &   ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓))    &   ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)))    ⇒   ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | 
|   | 
| Theorem | cbvexd 1942* | 
Deduction used to change bound variables, using implicit substitution,
       particularly useful in conjunction with dvelim 2036.  (Contributed by NM,
       2-Jan-2002.)  (Revised by Mario Carneiro, 6-Oct-2016.)  (Proof rewritten
       by Jim Kingdon, 10-Jun-2018.)
 | 
| ⊢ Ⅎ𝑦𝜑   
 &   ⊢ (𝜑 → Ⅎ𝑦𝜓)   
 &   ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)))    ⇒   ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | 
|   | 
| Theorem | cbvaldva 1943* | 
Rule used to change the bound variable in a universal quantifier with
       implicit substitution.  Deduction form.  (Contributed by David Moews,
       1-May-2017.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒))    ⇒   ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | 
|   | 
| Theorem | cbvexdva 1944* | 
Rule used to change the bound variable in an existential quantifier with
       implicit substitution.  Deduction form.  (Contributed by David Moews,
       1-May-2017.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒))    ⇒   ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | 
|   | 
| Theorem | cbvaldvaw 1945* | 
Rule used to change the bound variable in a universal quantifier with
       implicit substitution.  Deduction form.  Version of cbvaldva 1943 with a
       disjoint variable condition.  (Contributed by David Moews, 1-May-2017.)
       (Revised by GG, 10-Jan-2024.)  (Revised by Wolf Lammen, 10-Feb-2024.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒))    ⇒   ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | 
|   | 
| Theorem | cbvexdvaw 1946* | 
Rule used to change the bound variable in an existential quantifier with
       implicit substitution.  Deduction form.  Version of cbvexdva 1944 with a
       disjoint variable condition.  (Contributed by David Moews, 1-May-2017.)
       (Revised by GG, 10-Jan-2024.)  (Revised by Wolf Lammen, 10-Feb-2024.)
 | 
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒))    ⇒   ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | 
|   | 
| Theorem | cbval2vw 1947* | 
Rule used to change bound variables, using implicit substitution.
       (Contributed by NM, 4-Feb-2005.)  (Revised by GG, 10-Jan-2024.)
 | 
| ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓))    ⇒   ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) | 
|   | 
| Theorem | cbvex2vw 1948* | 
Rule used to change bound variables, using implicit substitution.
       (Contributed by NM, 26-Jul-1995.)  (Revised by GG, 10-Jan-2024.)
 | 
| ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓))    ⇒   ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) | 
|   | 
| Theorem | cbvex4v 1949* | 
Rule used to change bound variables, using implicit substitition.
       (Contributed by NM, 26-Jul-1995.)
 | 
| ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑢) → (𝜑 ↔ 𝜓))    &   ⊢ ((𝑧 = 𝑓 ∧ 𝑤 = 𝑔) → (𝜓 ↔ 𝜒))    ⇒   ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑣∃𝑢∃𝑓∃𝑔𝜒) | 
|   | 
| Theorem | eean 1950 | 
Rearrange existential quantifiers.  (Contributed by NM, 27-Oct-2010.)
       (Revised by Mario Carneiro, 6-Oct-2016.)
 | 
| ⊢ Ⅎ𝑦𝜑   
 &   ⊢ Ⅎ𝑥𝜓    ⇒   ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | 
|   | 
| Theorem | eeanv 1951* | 
Rearrange existential quantifiers.  (Contributed by NM, 26-Jul-1995.)
 | 
| ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | 
|   | 
| Theorem | eeeanv 1952* | 
Rearrange existential quantifiers.  (Contributed by NM, 26-Jul-1995.)
       (Proof shortened by Andrew Salmon, 25-May-2011.)
 | 
| ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒)) | 
|   | 
| Theorem | ee4anv 1953* | 
Rearrange existential quantifiers.  (Contributed by NM, 31-Jul-1995.)
 | 
| ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤𝜓)) | 
|   | 
| Theorem | ee8anv 1954* | 
Rearrange existential quantifiers.  (Contributed by Jim Kingdon,
       23-Nov-2019.)
 | 
| ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ∧ ∃𝑣∃𝑢∃𝑡∃𝑠𝜓)) | 
|   | 
| Theorem | nexdv 1955* | 
Deduction for generalization rule for negated wff.  (Contributed by NM,
       5-Aug-1993.)
 | 
| ⊢ (𝜑 → ¬ 𝜓)    ⇒   ⊢ (𝜑 → ¬ ∃𝑥𝜓) | 
|   | 
| Theorem | chvarv 1956* | 
Implicit substitution of 𝑦 for 𝑥 into a theorem. 
(Contributed
       by NM, 20-Apr-1994.)
 | 
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓))    &   ⊢ 𝜑    ⇒   ⊢ 𝜓 | 
|   | 
| 1.4.5  More substitution theorems
 | 
|   | 
| Theorem | hbs1 1957* | 
𝑥
is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are
distinct.
       (Contributed by NM, 5-Aug-1993.)  (Proof by Jim Kingdon, 16-Dec-2017.)
       (New usage is discouraged.)
 | 
| ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | 
|   | 
| Theorem | nfs1v 1958* | 
𝑥
is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are
distinct.
       (Contributed by Mario Carneiro, 11-Aug-2016.)
 | 
| ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | 
|   | 
| Theorem | sbhb 1959* | 
Two ways of expressing "𝑥 is (effectively) not free in 𝜑."
       (Contributed by NM, 29-May-2009.)
 | 
| ⊢ ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑)) | 
|   | 
| Theorem | hbsbv 1960* | 
This is a version of hbsb 1968 with an extra distinct variable constraint,
       on 𝑧 and 𝑥.  (Contributed by Jim
Kingdon, 25-Dec-2017.)
 | 
| ⊢ (𝜑 → ∀𝑧𝜑)    ⇒   ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) | 
|   | 
| Theorem | nfsbxy 1961* | 
Similar to hbsb 1968 but with an extra distinct variable
constraint, on
       𝑥 and 𝑦.  (Contributed by Jim
Kingdon, 19-Mar-2018.)
 | 
| ⊢ Ⅎ𝑧𝜑    ⇒   ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | 
|   | 
| Theorem | nfsbxyt 1962* | 
Closed form of nfsbxy 1961.  (Contributed by Jim Kingdon, 9-May-2018.)
 | 
| ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) | 
|   | 
| Theorem | sbco2vlem 1963* | 
This is a version of sbco2 1984 where 𝑧 is distinct from 𝑥 and
from
       𝑦.  It is a lemma on the way to proving
sbco2v 1967 which only
       requires that 𝑧 and 𝑥 be distinct. 
(Contributed by Jim Kingdon,
       25-Dec-2017.)  Remove one disjoint variable condition.  (Revised by Jim
       Kingdon, 3-Feb-2018.)
 | 
| ⊢ (𝜑 → ∀𝑧𝜑)    ⇒   ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | 
|   | 
| Theorem | sbco2vh 1964* | 
This is a version of sbco2 1984 where 𝑧 is distinct from 𝑥.
       (Contributed by Jim Kingdon, 12-Feb-2018.)
 | 
| ⊢ (𝜑 → ∀𝑧𝜑)    ⇒   ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | 
|   | 
| Theorem | nfsb 1965* | 
If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when
       𝑦 and 𝑧 are distinct. 
(Contributed by Mario Carneiro,
       11-Aug-2016.)  (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
 | 
| ⊢ Ⅎ𝑧𝜑    ⇒   ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | 
|   | 
| Theorem | nfsbv 1966* | 
If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when
       𝑧 is distinct from 𝑥 and
𝑦. 
Version of nfsb 1965 requiring
       more disjoint variables.  (Contributed by Wolf Lammen, 7-Feb-2023.)
       Remove disjoint variable condition on 𝑥, 𝑦.  (Revised by Steven
       Nguyen, 13-Aug-2023.)  Reduce axiom usage.  (Revised by GG,
       25-Aug-2024.)
 | 
| ⊢ Ⅎ𝑧𝜑    ⇒   ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | 
|   | 
| Theorem | sbco2v 1967* | 
Version of sbco2 1984 with disjoint variable conditions. 
(Contributed by
       Wolf Lammen, 29-Apr-2023.)
 | 
| ⊢ Ⅎ𝑧𝜑    ⇒   ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | 
|   | 
| Theorem | hbsb 1968* | 
If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when
       𝑦 and 𝑧 are distinct. 
(Contributed by NM, 12-Aug-1993.)  (Proof
       rewritten by Jim Kingdon, 22-Mar-2018.)
 | 
| ⊢ (𝜑 → ∀𝑧𝜑)    ⇒   ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) | 
|   | 
| Theorem | equsb3lem 1969* | 
Lemma for equsb3 1970.  (Contributed by NM, 4-Dec-2005.)  (Proof
shortened
       by Andrew Salmon, 14-Jun-2011.)
 | 
| ⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) | 
|   | 
| Theorem | equsb3 1970* | 
Substitution applied to an atomic wff.  (Contributed by Raph Levien and
       FL, 4-Dec-2005.)
 | 
| ⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) | 
|   | 
| Theorem | sbn 1971 | 
Negation inside and outside of substitution are equivalent.
       (Contributed by NM, 5-Aug-1993.)  (Proof rewritten by Jim Kingdon,
       3-Feb-2018.)
 | 
| ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | 
|   | 
| Theorem | sbim 1972 | 
Implication inside and outside of substitution are equivalent.
       (Contributed by NM, 5-Aug-1993.)  (Proof rewritten by Jim Kingdon,
       3-Feb-2018.)
 | 
| ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | 
|   | 
| Theorem | sbor 1973 | 
Logical OR inside and outside of substitution are equivalent.
       (Contributed by NM, 29-Sep-2002.)  (Proof rewritten by Jim Kingdon,
       3-Feb-2018.)
 | 
| ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) | 
|   | 
| Theorem | sban 1974 | 
Conjunction inside and outside of a substitution are equivalent.
       (Contributed by NM, 5-Aug-1993.)  (Proof rewritten by Jim Kingdon,
       3-Feb-2018.)
 | 
| ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | 
|   | 
| Theorem | sbrim 1975 | 
Substitution with a variable not free in antecedent affects only the
       consequent.  (Contributed by NM, 5-Aug-1993.)
 | 
| ⊢ (𝜑 → ∀𝑥𝜑)    ⇒   ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) | 
|   | 
| Theorem | sblim 1976 | 
Substitution with a variable not free in consequent affects only the
       antecedent.  (Contributed by NM, 14-Nov-2013.)  (Revised by Mario
       Carneiro, 4-Oct-2016.)
 | 
| ⊢ Ⅎ𝑥𝜓    ⇒   ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓)) | 
|   | 
| Theorem | sb3an 1977 | 
Conjunction inside and outside of a substitution are equivalent.
     (Contributed by NM, 14-Dec-2006.)
 | 
| ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)) | 
|   | 
| Theorem | sbbi 1978 | 
Equivalence inside and outside of a substitution are equivalent.
     (Contributed by NM, 5-Aug-1993.)
 | 
| ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) | 
|   | 
| Theorem | sblbis 1979 | 
Introduce left biconditional inside of a substitution.  (Contributed by
       NM, 19-Aug-1993.)
 | 
| ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓)    ⇒   ⊢ ([𝑦 / 𝑥](𝜒 ↔ 𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ 𝜓)) | 
|   | 
| Theorem | sbrbis 1980 | 
Introduce right biconditional inside of a substitution.  (Contributed by
       NM, 18-Aug-1993.)
 | 
| ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓)    ⇒   ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒)) | 
|   | 
| Theorem | sbrbif 1981 | 
Introduce right biconditional inside of a substitution.  (Contributed by
       NM, 18-Aug-1993.)
 | 
| ⊢ (𝜒 → ∀𝑥𝜒)   
 &   ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓)    ⇒   ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) | 
|   | 
| Theorem | sbco2yz 1982* | 
This is a version of sbco2 1984 where 𝑧 is distinct from 𝑦.  It is
       a lemma on the way to proving sbco2 1984 which has no distinct variable
       constraints.  (Contributed by Jim Kingdon, 19-Mar-2018.)
 | 
| ⊢ Ⅎ𝑧𝜑    ⇒   ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | 
|   | 
| Theorem | sbco2h 1983 | 
A composition law for substitution.  (Contributed by NM, 30-Jun-1994.)
       (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
 | 
| ⊢ (𝜑 → ∀𝑧𝜑)    ⇒   ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | 
|   | 
| Theorem | sbco2 1984 | 
A composition law for substitution.  (Contributed by NM, 30-Jun-1994.)
       (Revised by Mario Carneiro, 6-Oct-2016.)
 | 
| ⊢ Ⅎ𝑧𝜑    ⇒   ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | 
|   | 
| Theorem | sbco2d 1985 | 
A composition law for substitution.  (Contributed by NM, 5-Aug-1993.)
 | 
| ⊢ (𝜑 → ∀𝑥𝜑)   
 &   ⊢ (𝜑 → ∀𝑧𝜑)   
 &   ⊢ (𝜑 → (𝜓 → ∀𝑧𝜓))    ⇒   ⊢ (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓)) | 
|   | 
| Theorem | sbco2vd 1986* | 
Version of sbco2d 1985 with a distinct variable constraint between
𝑥
       and 𝑧.  (Contributed by Jim Kingdon,
19-Feb-2018.)
 | 
| ⊢ (𝜑 → ∀𝑥𝜑)   
 &   ⊢ (𝜑 → ∀𝑧𝜑)   
 &   ⊢ (𝜑 → (𝜓 → ∀𝑧𝜓))    ⇒   ⊢ (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓)) | 
|   | 
| Theorem | sbco 1987 | 
A composition law for substitution.  (Contributed by NM, 5-Aug-1993.)
 | 
| ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) | 
|   | 
| Theorem | sbco3v 1988* | 
Version of sbco3 1993 with a distinct variable constraint between
𝑥
and
       𝑦.  (Contributed by Jim Kingdon,
19-Feb-2018.)
 | 
| ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑) | 
|   | 
| Theorem | sbcocom 1989 | 
Relationship between composition and commutativity for substitution.
     (Contributed by Jim Kingdon, 28-Feb-2018.)
 | 
| ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑) | 
|   | 
| Theorem | sbcomv 1990* | 
Version of sbcom 1994 with a distinct variable constraint between
𝑥
and
       𝑧.  (Contributed by Jim Kingdon,
28-Feb-2018.)
 | 
| ⊢ ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑) | 
|   | 
| Theorem | sbcomxyyz 1991* | 
Version of sbcom 1994 with distinct variable constraints between
𝑥
and
       𝑦, and 𝑦 and 𝑧. 
(Contributed by Jim Kingdon,
       21-Mar-2018.)
 | 
| ⊢ ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑) | 
|   | 
| Theorem | sbco3xzyz 1992* | 
Version of sbco3 1993 with distinct variable constraints between
𝑥
and
       𝑧, and 𝑦 and 𝑧.  Lemma
for proving sbco3 1993.  (Contributed
       by Jim Kingdon, 22-Mar-2018.)
 | 
| ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑) | 
|   | 
| Theorem | sbco3 1993 | 
A composition law for substitution.  (Contributed by NM, 5-Aug-1993.)
       (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
 | 
| ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑) | 
|   | 
| Theorem | sbcom 1994 | 
A commutativity law for substitution.  (Contributed by NM, 27-May-1997.)
     (Proof rewritten by Jim Kingdon, 22-Mar-2018.)
 | 
| ⊢ ([𝑦 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑦 / 𝑧]𝜑) | 
|   | 
| Theorem | nfsbt 1995* | 
Closed form of nfsb 1965.  (Contributed by Jim Kingdon, 9-May-2018.)
 | 
| ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) | 
|   | 
| Theorem | nfsbd 1996* | 
Deduction version of nfsb 1965.  (Contributed by NM, 15-Feb-2013.)
 | 
| ⊢ Ⅎ𝑥𝜑   
 &   ⊢ (𝜑 → Ⅎ𝑧𝜓)    ⇒   ⊢ (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) | 
|   | 
| Theorem | sb9v 1997* | 
Like sb9 1998 but with a distinct variable constraint
between 𝑥 and
       𝑦.  (Contributed by Jim Kingdon,
28-Feb-2018.)
 | 
| ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | 
|   | 
| Theorem | sb9 1998 | 
Commutation of quantification and substitution variables.  (Contributed
       by NM, 5-Aug-1993.)  (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
 | 
| ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | 
|   | 
| Theorem | sb9i 1999 | 
Commutation of quantification and substitution variables.  (Contributed by
     NM, 5-Aug-1993.)  (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
 | 
| ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑) | 
|   | 
| Theorem | sbnf2 2000* | 
Two ways of expressing "𝑥 is (effectively) not free in 𝜑."
       (Contributed by Gérard Lang, 14-Nov-2013.)  (Revised by Mario
       Carneiro, 6-Oct-2016.)
 | 
| ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) |