ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvex4v GIF version

Theorem cbvex4v 1923
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 26-Jul-1995.)
Hypotheses
Ref Expression
cbvex4v.1 ((𝑥 = 𝑣𝑦 = 𝑢) → (𝜑𝜓))
cbvex4v.2 ((𝑧 = 𝑓𝑤 = 𝑔) → (𝜓𝜒))
Assertion
Ref Expression
cbvex4v (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑣𝑢𝑓𝑔𝜒)
Distinct variable groups:   𝑧,𝑤,𝜒   𝑣,𝑢,𝜑   𝑥,𝑦,𝜓   𝑓,𝑔,𝜓   𝑤,𝑓   𝑧,𝑔   𝑤,𝑢,𝑧,𝑣   𝑥,𝑢,𝑤,𝑧   𝑦,𝑣,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔)   𝜓(𝑧,𝑤,𝑣,𝑢)   𝜒(𝑥,𝑦,𝑣,𝑢,𝑓,𝑔)

Proof of Theorem cbvex4v
StepHypRef Expression
1 cbvex4v.1 . . . 4 ((𝑥 = 𝑣𝑦 = 𝑢) → (𝜑𝜓))
212exbidv 1861 . . 3 ((𝑥 = 𝑣𝑦 = 𝑢) → (∃𝑧𝑤𝜑 ↔ ∃𝑧𝑤𝜓))
32cbvex2v 1917 . 2 (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑣𝑢𝑧𝑤𝜓)
4 cbvex4v.2 . . . 4 ((𝑧 = 𝑓𝑤 = 𝑔) → (𝜓𝜒))
54cbvex2v 1917 . . 3 (∃𝑧𝑤𝜓 ↔ ∃𝑓𝑔𝜒)
652exbii 1599 . 2 (∃𝑣𝑢𝑧𝑤𝜓 ↔ ∃𝑣𝑢𝑓𝑔𝜒)
73, 6bitri 183 1 (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑣𝑢𝑓𝑔𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  enq0sym  7394  addnq0mo  7409  mulnq0mo  7410  addsrmo  7705  mulsrmo  7706
  Copyright terms: Public domain W3C validator