| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvex4v | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 26-Jul-1995.) |
| Ref | Expression |
|---|---|
| cbvex4v.1 | ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑢) → (𝜑 ↔ 𝜓)) |
| cbvex4v.2 | ⊢ ((𝑧 = 𝑓 ∧ 𝑤 = 𝑔) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| cbvex4v | ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑣∃𝑢∃𝑓∃𝑔𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvex4v.1 | . . . 4 ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑢) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | 2exbidv 1914 | . . 3 ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑢) → (∃𝑧∃𝑤𝜑 ↔ ∃𝑧∃𝑤𝜓)) |
| 3 | 2 | cbvex2v 1971 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑣∃𝑢∃𝑧∃𝑤𝜓) |
| 4 | cbvex4v.2 | . . . 4 ⊢ ((𝑧 = 𝑓 ∧ 𝑤 = 𝑔) → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | cbvex2v 1971 | . . 3 ⊢ (∃𝑧∃𝑤𝜓 ↔ ∃𝑓∃𝑔𝜒) |
| 6 | 5 | 2exbii 1652 | . 2 ⊢ (∃𝑣∃𝑢∃𝑧∃𝑤𝜓 ↔ ∃𝑣∃𝑢∃𝑓∃𝑔𝜒) |
| 7 | 3, 6 | bitri 184 | 1 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑣∃𝑢∃𝑓∃𝑔𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: enq0sym 7615 addnq0mo 7630 mulnq0mo 7631 addsrmo 7926 mulsrmo 7927 |
| Copyright terms: Public domain | W3C validator |